ÌâÄ¿ÄÚÈÝ
3£®£¨1£©Á£×Óͨ¹ýµç³¡µÄʱ¼ä£»
£¨2£©µç³¡Ç¿¶ÈµÄ´óС£»
£¨3£©´Å¸ÐӦǿ¶ÈµÄ´óС£®
·ÖÎö £¨1£©´øµçÁ£×ÓÔڵ糡ÖÐ×öÀàÆ½Å×Ô˶¯£¬¸ù¾Ý´¹Ö±µç³¡·½ÏòÉϵÄÔÈËÙÖ±ÏßÔ˶¯¹æÂÉ¿ÉÇóµÃʱ¼ä£»
£¨2£©ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉ¿ÉÇóµÃ¼ÓËÙ¶È£¬ÔÙÀàÆ½Å×Ô˶¯µÄ¹æÂÉ¿ÉÇóµÃµç³¡Ç¿¶È£»
£¨3£©¸ù¾Ý¼¸ºÎ¹ØÏµ¿ÉÃ÷È·´øµçÁ£×ÓÔڴų¡ÖÐÔ˶¯°ë¾¶£»ÔÙÓÉÂåÂ××ÈÁ¦³äµ±ÏòÐÄÁ¦ÁÐʽ¿ÉÇóµÃ´Å¸ÐӦǿ¶ÈµÄ´óС£®
½â´ð ½â£º£¨1£©ÉèÁ£×Óͨ¹ýµç³¡µÄʱ¼äΪt£¬ÓÉÔÈËÙÔ˶¯¹«Ê½µÃ£ºd=v0t
µÃ£º$t=\frac{d}{v_0}$
£¨2£©ÉèÁ£×ÓÀ뿪µç³¡Ê±ËÙ¶ÈÑØµç³¡·½ÏòµÄ·ÖÁ¿Îªvy£¬ÓÉËÙ¶È·Ö½â¿ÉµÃ£º${v_y}=\sqrt{{v^2}-v_0^2}=\sqrt{3}{v_0}$
Éèµç³¡Ç¿¶È´óСΪE£¬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãº${a_y}=\frac{qE}{m}$
ÓÉÔȱäËÙÔ˶¯¹«Ê½µÃ£ºvy=ayt
ÁªÁ¢ÒÔÉϸ÷ʽµÃ£º$E=\frac{{\sqrt{3}mv_0^2}}{qd}$
£¨3£©ÉèÁ£×ÓÀ뿪µç³¡Ê±ËÙ¶È·½ÏòÓëµç´Å³¡±ß½çMN¼äµÄ¼Ð½ÇΪ¦È£¬ÓÉËٶȺϳɿɵãº$sin¦È=\frac{v_0}{v}=\frac{1}{2}$¦È=30?
Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÈçͼËùʾ£¬Ô²ÐÄ¿ÉÄÜΪO1»òO2£¬À뿪´Å³¡µÄµã¿ÉÄÜΪPµã»òQµã£®Éè´ÓPµãÀ뿪´Å³¡µÄ¹ìµÀ°ëΪr1£¬´ÓQµãÀ뿪´Å³¡µÄ¹ìµÀ°ëΪr2£¬Óɼ¸ºÎ֪ʶ¿ÉµÃ£ºd=r1cos¦È+r1cos¦Â
d=r2cos¦È-r2cos¦Â
ÓÉÂåÂØ×ÈÁ¦¹«Ê½µÃ¼°ÔÈËÙÔ²ÖÜÔ˶¯¹«Ê½µÃ£º$qvB=m\frac{v^2}{r}$
ÁªÁ¢ÒÔÉϸ÷ʽµÃ£º${B_1}=\frac{{£¨\sqrt{3}+1£©m{v_0}}}{qd}$
${B_2}=\frac{{£¨\sqrt{3}-1£©m{v_0}}}{qd}$
´ð£º£¨1£©Á£×Óͨ¹ýµç³¡µÄʱ¼äΪ$\frac{d}{{v}_{0}}$£»
£¨2£©µç³¡Ç¿¶ÈµÄ´óС$\frac{\sqrt{3}m{v}_{0}^{2}}{qd}$£»
£¨3£©´Å¸ÐӦǿ¶ÈµÄ´óС¿ÉÄÜΪ$\frac{£¨\sqrt{3}+1£©m{v}_{0}}{qd}$»ò$\frac{£¨\sqrt{3}-1£©m{v}_{0}}{qd}$£®
µãÆÀ ±¾Ì⿼²é´øµçÁ£×ÓÔڵ糡ºÍ´Å³¡ÖеÄÔ˶¯¹æÂÉ£¬Òª×¢ÒâÃ÷È·Ôڵ糡ÖÐÒ»°ã¸ù¾ÝÔ˶¯µÄºÏ³ÉºÍ·Ö½â¹æÂɽ⣻¶øÔڴų¡ÖÐҪעÒâÃ÷È·Ô²ÖÜÔ˶¯¹æÂÉ£¬Ã÷È·¼¸ºÎ¹ØÏµ¿ÉÂåÂ××ÈÁ¦³äµ±ÏòÐÄÁ¦µÄÓ¦Óã®
| A£® | ÏòÓÒÔ˶¯ | B£® | Ïò×óÔ˶¯ | ||
| C£® | ¾²Ö¹ | D£® | ÉÏÊöÈýÖÖÇé¿ö¶¼ÓпÉÄÜ |
| A£® | µÈÐ§Ìæ´ú·¨ | B£® | ¿ØÖƱäÁ¿·¨ | C£® | ÀíÏëÄ£ÐÍ·¨ | D£® | ±ÈÖµ¶¨Òå·¨ |
| A£® | ͼÒÒÖÐÖ±ÏßBCÊǵçѹ±íV1µÄ¶ÁÊýËæµçÁ÷±í¶ÁÊýµÄ±ä»¯Í¼Ïó | |
| B£® | ±ä×èÆ÷µÄ»¬Æ¬ÏòÓÒ»¬¶¯Ê±£¬µçѹ±íV2¶ÁÊýÖð½¥Ôö¼Ó | |
| C£® | ´Ëµç·ÖУ¬±ä×èÆ÷ÏûºÄµÄ×î´ó¹¦ÂÊΪ4W | |
| D£® | ´Ëµç·ÖУ¬R0ÏûºÄµÄ×î´ó¹¦ÂÊΪ12W |