ÌâÄ¿ÄÚÈÝ
10£®£¨1£©¼ÓËÙ¶Èa1¼°ÉÏÉý¸ß¶Èh£»
£¨2£©ÔÚÔȼÓËÙÉÏÉý¹ý³ÌÖÐСÃ÷¶ÔµçÌݵذåµÄѹÁ¦£»
£¨3£©µçÌÝÔÈËÙÔ˶¯µÄʱ¼ä£®
·ÖÎö £¨1£©ÓÉÔ˶¯Ñ§¹«Ê½¿ÉÇó¼ÓËٶȼ°ÉÏÉý¸ß¶È£»
£¨2£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɺÍÅ£¶ÙµÚÈý¶¨ÂÉ¿ÉÇóСÃ÷¶ÔµçÌݵذåµÄѹÁ¦£»
£¨3£©ÓÉv-tͼ¿ÉÇóµçÌÝÔÈËÙÔ˶¯µÄʱ¼ä
½â´ð ½â£º£¨1£©${v}_{m}^{\;}={a}_{1}^{\;}{t}_{1}^{\;}$
´úÈëÊý¾ÝµÃ£º${a}_{1}^{\;}=0.9m/{s}_{\;}^{2}$
$h=\frac{{v}_{m}^{\;}}{2}{t}_{1}^{\;}$
´úÈëÊý¾ÝµÃ£ºh=180m
£¨2£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ£º$F-mg=m{a}_{1}^{\;}$
´úÈëÊý¾ÝµÃ£ºF=654N
ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɵãºÐ¡Ã÷¶ÔµçÌݵذåµÄѹÁ¦Îª654N£¬·½ÏòÊúÖ±ÏòÏÂ
£¨3£©ÔÈËÙÔ˶¯ºÍÔȼõËÙÔ˶¯µÄÎ»ÒÆ£º
${v}_{m}^{\;}{t}_{2}^{\;}+\frac{{v}_{m}^{\;}}{2}£¨t-{t}_{1}^{\;}-{t}_{2}^{\;}£©=H-h$
´úÈëÊý¾ÝµÃ£º${t}_{2}^{\;}=6s$
´ð£º£¨1£©¼ÓËÙ¶È${a}_{1}^{\;}$Ϊ$0.9m/{s}_{\;}^{2}$¼°ÉÏÉý¸ß¶ÈhΪ180m£»
£¨2£©ÔÚÔȼÓËÙÉÏÉý¹ý³ÌÖÐСÃ÷¶ÔµçÌݵذåµÄѹÁ¦Îª654N£»
£¨3£©µçÌÝÔÈËÙÔ˶¯µÄʱ¼ä6s£®
µãÆÀ ½â´ð´ËÌâµÄ¹Ø¼üÊÇÊìÁ·µØÓ¦ÓÃÔ˶¯Ñ§¹«Ê½ºÍÅ£¶Ù¶¨ÂÉ£¬¶ÔÔ˶¯¹ý³ÌÒªÇå³þ£¬¶ÔÔȱäËÙÖ±ÏßÔ˶¯£¬ÄÜÓÃÆ½¾ùËٶȵĹ«Ê½ÇóÎ»ÒÆ$x=\overline{v}t=\frac{{v}_{0}^{\;}+v}{2}t$
| A£® | a¹âµÄƵÂÊСÓÚb¹âµÄƵÂÊ | |
| B£® | ÔÚ²£Á§ÖÐa¹âµÄ´«²¥ËÙ¶È´óÓÚb¹âµÄ´«²¥ËÙ¶È | |
| C£® | ÔÚͬһ˫·ì¸ÉÉæ×°ÖÃÖУ¬a¹âÐγɵĸÉÉæÌõÎÆ¼ä¾à±Èb¹âµÄ´ó | |
| D£® | Èøø´É«¹â´Ó²£Á§ÉäÏò¿ÕÆø£¬Öð½¥Ôö´óÈëÉä½Ç£¬a¹âÏÈ·¢ÉúÈ«·´Éä |
| A£® | 6mºÍ1m | B£® | 5mºÍ1m | C£® | 5mºÍ5m | D£® | 1mºÍ1m |
| A£® | ´Ó×îµÍµãµ½CµãËùÔڵĸ߶ȣ¬ÎïÌåµÄËÙ¶ÈÏÈÔö´óºó¼õС | |
| B£® | ´Ó×îµÍµãµ½CµãËùÔڵĸ߶ȣ¬ÎïÌåµÄ¼ÓËÙ¶ÈÒ»Ö±ÔÚ¼õС | |
| C£® | AB½«ÔÚµ¯»Éµ½´ïCµãËùÔڵĸ߶Èʱ·ÖÀë | |
| D£® | ·ÖÀëºóAÏòÉÏÔ˶¯£¬BÏòÏÂÔ˶¯ |
| A£® | ¸ù¾ÝËٶȶ¨Òåʽv=$\frac{¡÷x}{¡÷t}$£¬µ±¡÷t·Ç³£·Ç³£Ð¡Ê±£¬¡÷x/¡÷t¾Í¿ÉÒÔ±íʾÎïÌåÔÚtʱ¿ÌµÄ˲ʱËÙ¶È£¬¸Ã¶¨ÒåÓ¦ÓÃÁ˼«ÏÞ˼Ïë·½·¨ | |
| B£® | ÔÚÓôòµã¼ÆÊ±Æ÷Ñо¿×ÔÓÉÂäÌåÔ˶¯Ê±£¬°ÑÖØÎïÔÚ¿ÕÆøÖеÄÂäÌåÔ˶¯½üËÆ¿´×ö×ÔÓÉÂäÌåÔ˶¯£¬ÕâÊDzÉÓÃÁË¿ØÖƱäÁ¿·¨ | |
| C£® | ÔÚÍÆµ¼ÔȱäËÙÖ±ÏßÔ˶¯µÄÎ»ÒÆ¹«Ê½Ê±£¬°ÑÕû¸öÔ˶¯¹ý³Ì»®·Ö³ÉºÜ¶àС¶Î£¬Ã¿Ò»Ð¡¶Î½üËÆ¿´×÷ÔÈËÙÖ±ÏßÔ˶¯£¬È»ºó°Ñ¸÷С¶ÎµÄÎ»ÒÆÏà¼Ó£¬ÕâÀï²ÉÓÃÁË΢Ԫ·¨ | |
| D£® | ÔÚ²»ÐèÒª¿¼ÂÇÎïÌå±¾ÉíµÄ´óСºÍÐÎ״ʱ£¬ÓÃÖʵãÀ´´úÌæÎïÌåµÄ·½·¨½ÐÀíÏ뻯ģÐÍ·¨ |
| A£® | ×÷ÓÃÔÚabÉϵÄÍâÁ¦Ó¦Ôö´óµ½ÔÀ´µÄ2±¶ | |
| B£® | ¸ÐÓ¦µç¶¯Êƽ«Ôö´óΪÔÀ´µÄ4±¶ | |
| C£® | µç×èRµÄ¹¦Âʽ«Ôö´óΪÔÀ´µÄ2±¶ | |
| D£® | ÍâÁ¦µÄ¹¦Âʽ«Ôö´óΪÔÀ´µÄ4±¶ |
| A£® | 0 | B£® | $\frac{{2{m^2}{v_0}}}{M+m}$ | C£® | $\frac{{2Mm{v_0}}}{M+m}$ | D£® | 2mv0 |