题目内容

一个宇航员在半径为R的星球上以初速度v0竖直上抛一物体,经t后物体落回宇航员手中.
(1)该星球表面重力加速度gx是多少?
(2)为了使沿星球表面抛出的物体不再落回星球表面,抛出时的速度至少为多少?
分析:(1)以初速度v0竖直上抛一物体,物体在重力作用下做匀减速直线运动,根据匀变速直线运动的速度时间关系公式可以求出该星球表面的重力加速度.
(2)为了使沿星球表面抛出的物体不再落回星球表面,卫星将绕星球表面做匀速圆周运动,重力提供万有引力,据此列式可得卫星运行的线速度.
解答:解:(1)由竖直上抛运动的公式得:gx=
v0
1
2
t
=
2v0
t

(2)为了使沿星球表面抛出的物体不再落回星球表面,设抛出时的速度至少为v,根据牛顿第二定律得:
   mgx=m
v2
R

得:vx=
Rgx
=
2Rv0
t

答:(1)该星球表面重力加速度gx
2v0
t
.(2)为了使沿星球表面抛出的物体不再落回星球表面,抛出时的速度至少为
2Rv0
t
点评:认清竖直上抛运动的本质,根据匀减速直线运动规律求出物体的重力加速度.卫星运行的速度根据重力提供圆周运动的向心力列式求解即可.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网