题目内容
19.| A. | A可能只受2个力 | B. | B可能受到3个力 | ||
| C. | A、B可能带同种电荷 | D. | 可以计算出A、B间距r=q$\sqrt{\frac{k}{mg}}$ |
分析 首先对B受力分析,结合平衡条件求解静电力,根据库仑定律求解AB间距;再对球A受力分析.
解答 解:BCD、首先对球B受力分析,受重力和向上的静电引力,不受绳子的拉力,否则不能平衡,故B球受2个力;
由于是静电引力,故A、B带异种电荷;
根据平衡条件,静电力大小等于mg,根据库仑定律,有:mg=k$\frac{{q}^{2}}{{r}^{2}}$,解得r=q$\sqrt{\frac{k}{mg}}$,故B错误,C错误,D正确;
A、球A受重力、向下的静电力、向上的拉力,三力平衡,故A错误;
故选:D
点评 本题考查受力分析,关键是结合平衡条件分析;
受力分析步骤:
物体的受力分析是解决力学问题的基础,同时也是关键所在,一般对物体进行受力分析的步骤如下:
①明确研究对象.
在进行受力分析时,研究对象可以是某一个物体,也可以是保持相对静止的若干个物体.在解决比较复杂的问题时,灵活地选取研究对象可以使问题简化.研究对象确定以后,只分析研究对象以外的物体施 予研究对象的力(既研究对象所受的外力),而不分析研究对象施予外界的力.
②按顺序找力.
必须是先场力(重力、电场力、磁场力),后接触力;接触力中必须先弹力,后摩擦力(只有在有弹力的接触面之间才可能有摩擦力).
③画出受力示意图,标明各力的符号.
④需要合成或分解时,必须画出相应的平行四边形.
练习册系列答案
相关题目
17.在对以下几位物理学家所作科学贡献的叙述中,错误的是( )
| A. | 卡文迪许第一次在实验室里测出了万有引力常量 | |
| B. | 爱因斯坦提出的狭义相对论,并不是否定了经典力学 | |
| C. | 开普勒发现了行星运动定律 | |
| D. | 普朗克提出了能量量子说和成功解释了光电效应 |
10.
如图所示,用与竖直方向成θ角的倾斜轻绳a和水平轻绳子b共同固定一个小球,这时绳b的拉力为F1.现在保持小球在原位置不动,使绳子b在原竖直平面内逆时针转过θ角固定,轻绳b拉力变为F2;再逆时针转过θ角固定,绳b拉力变为F3,则( )
| A. | F1<F2<F3 | B. | F1>F3>F2 | C. | F1=F3<F2 | D. | F1=F3>F2 |
7.
如图甲所示,一个匝数n=100的圆形导体线圈,面积S1=0.4m2,电阻r=1Ω.在线圈中存在面积S2=0.3m2的垂直线圈平面向外的匀强磁场区域,磁感应强度B随时间t变化的关系如图乙所示.有一个R=2Ω的电阻,将其两端a、b分别与图甲中的圆形线圈相连接,b端接地,则下列说法正确的是( )
| A. | 圆形线圈中产生的感应电动势E=4.5V | |
| B. | 在0~4s时间内通过电阻R的电荷量q=8C | |
| C. | 设b端电势为零,则a端的电势φa=3V | |
| D. | 在0~4s时间内电阻R上产生的焦耳热Q=18J |
11.
如图所示,5m长的细绳,两端分别固定在垂直于地面、相距4m的两杆的顶端A和B,绳上有一个光滑的轻质小挂钩O,O的下面挂有重力为G的小物体,平衡时下列判断正确的是( )
| A. | 细绳的AO段、BO段跟水平线的夹角肯定相等 | |
| B. | 细绳的AO段、BO段中的张力相等 | |
| C. | 两杆顶端所受绳子的拉力均为$\frac{5G}{6}$ | |
| D. | 只有两杆等高时,选项A才正确 |
8.
图(a)为一列简谐横波在t=2s时的波形图,图(b)为介质中平衡位置在x=1.5m处的质点的振动图象,P是平衡位置为x=2m的质点.下列说法正确的是( )
| A. | 波速大小为1m/s,振幅为8cm | B. | 0~2s时间内,P运动的路程为8cm | ||
| C. | 0-2s时间内,P向y轴正方向运动 | D. | 当t=7s时,P恰好回到平衡位置 |
9.一物体自楼顶平台上从静止开始匀加速下落h1时,在平台下面h2处的窗口也有一物体从静止开始匀加速下落,且二者的加速度相同.如果两物体同时到达地面,则楼高为( )
| A. | h1+h2 | B. | $\frac{{{h}_{1}}^{2}}{4({h}_{1}+{h}_{2})}$ | ||
| C. | $\frac{({h}_{1}+{h}_{2})^{2}}{{h}_{1}-{h}_{2}}$ | D. | $\frac{({h}_{1}+{h}_{2})^{2}}{4{h}_{1}}$ |