ÌâÄ¿ÄÚÈÝ
6£®Á½¿éÏàͬµÄµçÁ÷±íG£¨ÂúÆ«µçÁ÷Ig=0.5mA£¬ÄÚ×èRg=200¦¸£©£»µçÔ´£¨µç¶¯ÊÆE=3V£¬ÄÚ×è²»¼Æ£©
»¹Óпɹ©Ñ¡ÔñµÄÆ÷²Ä£º
A£®¶¨Öµµç×裺600¦¸
B£®¶¨Öµµç×裺5800¦¸
C£®¶¨Öµµç×裺$\frac{1}{3.996}$¦¸¡Ö0.25¦¸
D£®¶¨Öµµç×裺$\frac{1}{0.3996}$¦¸¡Ö2.5¦¸
E£®»¬¶¯±ä×èÆ÷£º0¡«10¦¸£¬2A
F£®»¬¶¯±ä×èÆ÷£º0¡«200¦¸£¬0.1A
ÓÉÓÚûÓеçѹ±íºÍµçÁ÷±í£¬¸ÃѧϰС×éÉè¼ÆÁËÈçͼËùʾµÄ²âÁ¿µç·£¬ÎªÁ˽ÏΪ¾«È·µØ²âÁ¿µçÁ÷ºÍµçѹµÄÖµ£¬Ôò
£¨1£©µç×èR1Ñ¡ÔñB£¬µç×èR2Ñ¡ÔñC£¬¿ØÖƵç·²¿·ÖµÄ»¬¶¯±ä×èÆ÷Ó¦¸ÃÑ¡ÔñE£®£¨ÌîдÆ÷²ÄÇ°ÃæµÄ×Öĸ£©
£¨2£©Çë¸ù¾ÝÌâÄ¿Ëù¸øÆ÷²Ä£¬½«¿ØÖƲ¿·ÖµÄµç·ͼ²¹³äÍêÕû£®
£¨3£©ÔÚ²âÁ¿¹ý³ÌÖУ¬»¬¶¯±ä×èÆ÷µ÷Õûµ½Ä³Ò»Î»ÖÃʱ£¬¸Ã×éͬѧ·¢ÏÖÁ½Ö»±íÍ·Ö¸ÕëÆ«×ª½Ç¶ÈÍêÈ«Ïàͬ£¬Ôò´ËʱСµÆÅݵĵç×èÊÇ7.5¦¸£¨±£ÁôÁ½Î»ÓÐЧÊý×Ö£©£®
·ÖÎö £¨1£©·ÖÎöµç·½á¹¹£¬Ã÷È·²âÁ¿ÔÀí£¬¸ù¾Ýµç±íµÄ¸Ä×°ÔÀí¿ÉÖªÓ¦²ÉÓõÄÒÇ±í£»
£¨2£©¸ù¾ÝʵÑéÔÀí¼´¿ÉÃ÷ȷʵÑéµç·ͼ£»
£¨3£©¸ù¾Ý¸Ä×°ÔÀí·Ö±ðÇó³ö¸Ä×°ºóµçѹ±íºÍµçÁ÷±íµÄʾÊý±í´ïʽ£¬ÔÙÓÉÅ·Ä·¶¨Âɼ´¿ÉÇóµÃÄÚ×裮
½â´ð ½â£º£¨1£©Óɸø³öµÄ²¿·Öµç·ͼ¿ÉÖª£¬±¾ÌâÊDzÉÓÃÁ˵ç±íµÄ¸Ä×°ÔÀí½øÐÐʵÑéµÄ£»R1ÓëµçÁ÷±í´®Áª£¬ÔòÓУºU=Ig£¨Rg+R£©¡Ý2.5V£¬Ôò¿ÉÖª£¬R¡Ý4800¦¸£»¹ÊR1ӦѡÔñB£»
R2ÓëµçÁ÷¼Æ²¢Áª£¬Á÷¹ýµçÁ÷¼ÆºÍR2µÄµçÁ÷Ö®ºÍÓ¦´óÓÚ0.3A£¬Ôò¿ÉÖª£ºIg+$\frac{{I}_{g}{R}_{g}}{{R}_{2}}$¡Ý0.3A£¬½âµÃ£ºR2¡Ü0.3¦¸£»¹ÊÑ¡C£»Òò±¾ÊµÑéÒª²ÉÓû¬¶¯±ä×èÆ÷·Öѹ½Ó·¨£¬¹ÊΪÁ˱ãÓÚ¿ØÖÆ£¬»¬¶¯±ä×èÆ÷Ñ¡ÔñE£»
£¨2£©¸ù¾ÝÌâÒâ¿ÉÖª£¬±¾ÊµÑéÓ¦²ÉÓ÷Öѹ½Ó·¨£¬ÊµÑéµç·ͼÈçͼËùʾ£»![]()
£¨3£©Á½Ö¸Õë½Ç¶ÈÏàͬ£¬ÉèʾÊýΪI£¬ÔòÓУº´ËʱµçѹֵΪ£ºI£¨Rg+R1£©£» µçÁ÷ֵΪ£ºI+$\frac{I{R}_{g}}{{R}_{2}}$£» ÓÉÅ·Ä·¶¨ÂÉ¿ÉÖª£ºµç×èR=$\frac{{R}_{g}+{R}_{1}}{1+\frac{{R}_{g}}{{R}_{2}}}$=$\frac{200+5800}{1+\frac{200}{0.25}}$=7.5¦¸£»
¹Ê´ð°¸Îª£º£¨1£©B£» C£»E£»£¨2£©ÈçͼËùʾ£»£¨3£©7.5
µãÆÀ ±¾Ì⿼²éÁ˲âÁ¿µç¶¯ÊƺÍÄÚµç×èÒÔ¼°µç±íµÄ¸Ä×°ÔÀí£¬Òª×¢ÒâÈÏÕæ·ÖÎö¸ø³öµÄÒDZíºÍ½Ó·¨£¬Ã÷ȷʵÑé·½·¨£¬²ÅÄÜ׼ȷÇó½â£®
| A£® | ÊÔ̽µçºÉÒ²¿ÉÒÔÓÃÒ»¸ö´øµçСÇò´úÌæ | |
| B£® | µçºÉÊØºã¹æÂÉÖ»ÔÚÒ»Çкê¹ÛÎïÀí¹ý³ÌÖгÉÁ¢£¬µ«ÔÚÒ»ÇÐ΢¹ÛÎïÀí¹ý³ÌÖв»³ÉÁ¢ | |
| C£® | ÔªµçºÉ¾ÍÊǵç×Ó | |
| D£® | ¸ÐÓ¦ÆðµçµÄ±¾ÖÊÊǵç×ÓÔÚͬһ¸öÎïÌåÄÚÖØÐ·ֲ¼ |
| A£® | .ÎïÌåÔÚ¿ÕÖÐÔ˶¯µÄʱ¼ä$\frac{£¨V-{V}_{0}£©}{g}$ | |
| B£® | .ÎïÌåÔÚ¿ÕÖÐÔ˶¯µÄʱ¼ä$\frac{\sqrt{{V}^{2}-{{V}_{0}}^{2}}}{g}$ | |
| C£® | .ÎïÌåÅ׳öʱµÄÊúÖ±¸ß¶ÈÊÇ$\frac{{V}^{2}}{g}$ | |
| D£® | .ÎïÌåÅ׳öʱµÄÊúÖ±¸ß¶ÈÊÇ$\frac{£¨{V}^{2}-{{V}_{0}}^{2}£©}{2g}$ |
| A£® | Èç¹ûevB£¾$\frac{{e}^{2}}{{r}^{2}}$£¬Ôò´Å³¡·½ÏòÒ»¶¨´¹Ö±Ö½ÃæÏòÀï | |
| B£® | Èç¹ûevB=k$\frac{2{e}^{2}}{{r}^{2}}$£¬Ôòµç×ӵĽÇËٶȦØ=$\frac{3eB}{2m}$ | |
| C£® | Èç¹ûevB£¼k$\frac{{e}^{2}}{{r}^{2}}$£¬Ôòµç×Ó²»¿ÉÄÜ×öÔÈËÙÔ²ÖÜÔ˶¯ | |
| D£® | Èç¹ûevB£¼k$\frac{{e}^{2}}{{r}^{2}}$£¬Ôòµç×ӵĽÇËÙ¶È¿ÉÄÜÓÐÁ½¸öÖµ |
| A£® | СÇò´ÓCµãÔ˶¯µ½DµãµÄʱ¼äΪ$\sqrt{\frac{L}{gtan¦È}}$ | |
| B£® | СÇòµÄ³õËÙ¶È´óСΪ$\sqrt{gLsin¦È}$ | |
| C£® | СÇò¸ÕÒªÂäµ½DµãʱËÙ¶È·½ÏòÓëˮƽ·½Ïò¼Ð½ÇΪ¦È | |
| D£® | C¡¢DÁ½µã¼äµÄÊúÖ±¸ß¶ÈΪ$\frac{Lcos¦È}{2tan¦È}$ |