题目内容
分析:滑块刚放上传送带时受到重力、支持力和沿斜面向下的滑动摩擦力,根据牛顿第二定律求解出加速度,再根据运动学公式求解;当滑块速度增大到等于传送带速度后,由于重力的下滑分力大于滑动摩擦力,故物体继续加速下滑,根据牛顿第二定律求出加速度后,再次根据运动学公式列式求出,得到总时间.
解答:解:设P初始下滑的加速度为a1,则有mgsinθ+μmgcosθ=ma1
解得a1=g(sinθ+μcosθ)=8m/s2
前一段加速滑下时间t1=
=0.5s
当P加速到u时,P发生的位移S1=
=1m<7m
此后P,继续加速下滑,设加速度为a2,
有mgsinθ-μmgcosθ=ma2,所以 a2=4m/s2
根据位移时间关系公式,有L-S1=ut2+
a2
解得后一段加速滑下时间t2=1s
P从A到B总时间t=t1+t2=1.5s
即P从A端运动到B端所需的时间是为1.5s.
解得a1=g(sinθ+μcosθ)=8m/s2
前一段加速滑下时间t1=
| u |
| a |
当P加速到u时,P发生的位移S1=
| u2 |
| 2a1 |
此后P,继续加速下滑,设加速度为a2,
有mgsinθ-μmgcosθ=ma2,所以 a2=4m/s2
根据位移时间关系公式,有L-S1=ut2+
| 1 |
| 2 |
| t | 2 2 |
解得后一段加速滑下时间t2=1s
P从A到B总时间t=t1+t2=1.5s
即P从A端运动到B端所需的时间是为1.5s.
点评:本题关键分析清楚小滑块的运动情况,根据牛顿第二定律求解出两段加速过程的加速度,再根据运动学公式列式求解.
练习册系列答案
相关题目