题目内容
1.某行星绕太阳公转的半径为r,公转周期为T,万有引力常量为G,由此可求出( )| A. | 该行星的质量 | B. | 太阳的质量 | ||
| C. | 该行星受太阳的万有引力大小 | D. | 太阳的密度 |
分析 研究行星绕地球做匀速圆周运动,根据万有引力提供向心力,列出等式求出太阳的质量.
解答 解:A、根据万有引力提供向心力,列出等式只能求出中心体的质量.故A错误.
B、研究卫星绕地球做匀速圆周运动,根据万有引力提供向心力,列出等式:$G\frac{Mm}{{r}^{2}}=m\frac{{4π}^{2}r}{{T}^{2}}$得:M=$\frac{{{4π}^{2}r}^{3}}{{GT}^{2}}$,故B正确;
C、根据万有引力提供向心力,列出等式:$G\frac{Mm}{{r}^{2}}=m\frac{{4π}^{2}r}{{T}^{2}}$,由于不知道行星的质量,所以不能求出该行星受太阳的万有引力大小,故C错误;
D、不知道太阳的体积,所以不能求出太阳的密度.故D错误.
故选:B.
点评 根据万有引力提供向心力,列出等式只能求出中心体的质量.要求出行星的质量,我们可以在行星周围找一颗卫星研究,即把行星当成中心体.
练习册系列答案
相关题目
8.作用在同一个物体上的两个共点力,一个力的大小是6N,另一个力的大小是8N,它们合力的大小可能是( )
| A. | 1 N | B. | 10 N | C. | 30 N | D. | 50 N |
9.
如图所示,水平地面上方矩形区域内存在垂直纸面向里的匀强磁场,在磁场正上方有两个边长相等,质量不等的相同材料制成的单匝闭合正方形线圈Ⅰ和Ⅱ.线圈Ⅰ粗细均匀,线圈Ⅱ粗细不均匀.两线圈从同一高度处由静止开始自由下落,进入磁场后最后落到地面.运动过程中,线圈平面始终保持在数直平面内且下边缘平行于磁场上边界.整个运动过程中通过线圈Ⅰ和Ⅱ导线的横截面的电荷量分别为q1、q2,运动的时间分别为t1、t2.不计空气阻力,则( )
| A. | q1与q2可能相等 | B. | q1一定大于q2 | C. | t1与t2可能相等 | D. | t1一定大于t2 |
16.
2012年4月30日凌晨,中国第十二、十三颗北斗导航卫星采用“一箭双星”技术成功发射,精确入轨,如图所示,则第十三颗北斗卫星所受地球引力的大小( )
| A. | 只与地球的质量有关 | B. | 只与该卫星的质量有关 | ||
| C. | 与地球和该卫星的质量均有关 | D. | 与地球和该卫星的质量均无关 |
6.甲中的直导线AB中通以正弦交变电流i,i的变化规律如图乙所示.若电流的正方向对应着电流从A到B,导线AB的右方有一不闭合的线圈,如图甲所示,则线圈的D端比C端的电势高且线圈的电势差最大的时刻是( )

| A. | t1时刻 | B. | t2时刻 | C. | t3时刻 | D. | t4时刻 |
13.一个物体先在水平面上以6m/s的速度做匀速直线运动,前进18m后冲上一个倾角为60°斜坡(经过交界处时速率不变),在斜坡上做匀减速运动,又前进了18m,速度恰好变为零,则物体在全过程中的平均速度大小为( )
| A. | 4m/s | B. | 5m/s | C. | 3m/s | D. | 2$\sqrt{3}$m/s |
11.航天器绕地球做匀速圆周运动,对于航天器中的物体( )
| A. | 完全不受地球的引力 | |
| B. | 处于完全失重状态 | |
| C. | 处于超重状态 | |
| D. | 地球对它的引力与航天器对它的支持力恰好平衡 |