ÌâÄ¿ÄÚÈÝ
4£®£¨1£©ÈôÔÚÕû¸ö¿Õ¼ä¼ÓÒ»ÔÈÇ¿µç³¡E1£¬Ê¹Ð¡ÇòÔÚxOzÆ½ÃæÄÚ×öÔÈËÙÔ²ÖÜÔ˶¯£¬Çó³¡Ç¿E1ºÍСÇòÔ˶¯µÄ¹ìµÀ°ë¾¶£»
£¨2£©ÈôÔÚÕû¸ö¿Õ¼ä¼ÓÒ»ÔÈÇ¿µç³¡E2£¬Ê¹Ð¡ÇòÑØOxÖá×öÔÈËÙÖ±ÏßÔ˶¯£¬ÇóE2µÄ´óС£»
£¨3£©ÈôÔÚÕû¸ö¿Õ¼ä¼ÓÒ»ÑØyÖáÕý·½ÏòµÄÔÈÇ¿µç³¡£¬Çó¸ÃСÇò´Ó×ø±êÔµãOÅ׳öºó£¬¾¹ýyÖáʱµÄ×ø±êyºÍ¶¯ÄÜEk£®
·ÖÎö £¨1£©ÈôÔÚÕû¸ö¿Õ¼ä¼ÓÒ»ÔÈÇ¿µç³¡E1£¬Ê¹Ð¡ÇòÔÚxOzÆ½ÃæÄÚ×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÖØÁ¦Óëµç³¡Á¦Æ½ºâ£¬ÓÉÆ½ºâÌõ¼þÇó³ö³¡Ç¿£®ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö°ë¾¶£®
£¨2£©ÈôÔÚÕû¸ö¿Õ¼ä¼ÓÒ»ÔÈÇ¿µç³¡E2£¬Ê¹Ð¡ÇòÑØOxÖá×öÔÈËÙÖ±ÏßÔ˶¯£¬ÖØÁ¦¡¢µç³¡Á¦ºÍÂåÂ××ÈÁ¦µÄºÏÁ¦ÎªÁ㣬¸ù¾ÝƽºâÌõ¼þÇó³ö³¡Ç¿£®
£¨3£©ÈôÔÚÕû¸ö¿Õ¼ä¼ÓÒ»ÑØyÖáÕý·½ÏòµÄÔÈÇ¿µç³¡£¬Ð¡ÇòÔÚ¸´ºÏ³¡ÖÐ×öÂÝÐýÔ˶¯£¬ÔËÓ÷ֽⷨÑо¿×ø±êyºÍ¶¯ÄÜEk£®
½â´ð ½â£º£¨1£©ÓÉÓÚСÇòÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬Éè¹ìµÀ°ë¾¶Îªr£¬
ÔòqE1=mg
½âµÃ ${E_1}=\frac{mg}{q}$
·½ÏòÑØyÖáÕýÏò
$qvB=m\frac{v_0^2}{r}$
½âµÃ£º$r=\frac{{m{v_0}}}{qB}$
£¨2£©Ð¡Çò×öÔÈËÙÖ±ÏßÔ˶¯£¬ÊÜÁ¦Æ½ºâ£¬Ôò
$q{E_2}=\sqrt{{{£¨mg£©}^2}+{{£¨q{v_0}B£©}^2}}$
½âµÃ£º${E_2}=\sqrt{{{£¨\frac{mg}{q}£©}^2}+v_0^2{B^2}}$
£¨3£©Ð¡ÇòÔÚ¸´ºÏ³¡ÖÐ×öÂÝÐýÔ˶¯£¬¿ÉÒÔ·Ö½â³ÉË®Æ½ÃæÄÚµÄÔÈËÙÔ²ÖÜÔ˶¯ºÍÑØyÖá·½ÏòµÄÔȼÓËÙÔ˶¯£®
×öÔȼÓËÙÔ˶¯µÄ¼ÓËÙ¶È $a=\frac{{q{E_3}-mg}}{m}=2g$
´ÓÔµãOµ½¾¹ýyÖáʱ¾ÀúµÄʱ¼ä t=nT
$y=\frac{1}{2}a{t^2}$
½âµÃ£º$y=\frac{{4{n^2}{¦Ð^2}{m^2}g}}{{{q^2}{B^2}}}$£¨n=1¡¢2¡¢3¡£©
Óɶ¯Äܶ¨ÀíµÃ£º$£¨q{E_3}-mg£©y={E_k}-\frac{1}{2}m{v_0}^2$
½âµÃ${E_k}=\frac{1}{2}m{v_0}^2+\frac{{8{n^2}{¦Ð^2}{m^3}{g^2}}}{{{q^2}{B^2}}}$£¨n=1¡¢2¡¢3¡£©
´ð£º£¨1£©ÈôÔÚÕû¸ö¿Õ¼ä¼ÓÒ»ÔÈÇ¿µç³¡E1£¬Ê¹Ð¡ÇòÔÚxOzÆ½ÃæÄÚ×öÔÈËÙÔ²ÖÜÔ˶¯£¬³¡Ç¿E1ºÍСÇòÔ˶¯µÄ¹ìµÀ°ë¾¶Îª$\frac{m{v}_{0}}{qB}$£»
£¨2£©ÈôÔÚÕû¸ö¿Õ¼ä¼ÓÒ»ÔÈÇ¿µç³¡E2£¬Ê¹Ð¡ÇòÑØOxÖá×öÔÈËÙÖ±ÏßÔ˶¯£¬E2µÄ´óСΪ$\sqrt{£¨\frac{mg}{q}£©^{2}+{v}_{0}^{2}{B}^{2}}$£»
£¨3£©ÈôÔÚÕû¸ö¿Õ¼ä¼ÓÒ»ÑØyÖáÕý·½ÏòµÄÔÈÇ¿µç³¡£¬Çó¸ÃСÇò´Ó×ø±êÔµãOÅ׳öºó£¬¾¹ýyÖáʱµÄ×ø±êyΪ$\frac{4{n}^{2}{¦Ð}^{2}{m}^{2}g}{{q}^{2}{B}^{2}}£¨n=1¡¢2¡¢3¡£©$ºÍ¶¯ÄÜEkΪ$\frac{1}{2}m{v}_{0}^{2}+\frac{8{n}^{2}{¦Ð}^{2}{m}^{3}{g}^{2}}{{q}^{2}{B}^{2}}£¨n=1¡¢2¡¢3¡£©$
µãÆÀ ±¾Ìâ¹Ø¼üÒªÕÆÎÕÎïÌå×öÔÈËÙÔ²ÖÜÔ˶¯µÄÌõ¼þ£¬·ÖÎöÊÜÁ¦Çé¿öÊÇ»ù´¡£®¶ÔÓÚСÇò×öÂÝÐýÔ˶¯£¬²ÉÓÃÔ˶¯µÄ·Ö½â·¨Ñо¿Êdz£Ó÷½·¨£®
| A£® | Ò»¸öÁ¦¿ÉÄÜÓÐÁ½¸öÊ©Á¦ÎïÌå | |
| B£® | Á¦µÄÈýÒªËØÏàͬ£¬×÷ÓÃЧ¹ûÒ»¶¨Ïàͬ | |
| C£® | ÎïÌåÊܵ½Á¦µÄ×÷Óã¬ÆäÔ˶¯×´Ì¬Î´±Ø¸Ä±ä | |
| D£® | ÎïÌå·¢ÉúÐαäʱ£¬Ò»¶¨Êܵ½Á¦µÄ×÷Óà |
| A£® | ÎïÌåÓëµØÃæÖ®¼äµÄ¶¯Ä¦²ÁÒòÊýΪ0.2 | |
| B£® | ÎïÌåÔ˶¯Î»ÒÆÎª13m | |
| C£® | ǰ3mÔ˶¯¹ý³ÌÖÐÎïÌåµÄ¼Ó³Ì¶ÈΪ3m/s2 | |
| D£® | x=9mʱ£¬ÎïÌåËÙ¶ÈΪ3$\sqrt{2}$m/s |
| A£® | µØÇòµÄÖÊÁ¿ | B£® | µØÇòµÄÃÜ¶È | ||
| C£® | µØÇòµÄ°ë¾¶ | D£® | ÔÂÇòÈÆµØÇòÔËÐÐËٶȵĴóС |