ÌâÄ¿ÄÚÈÝ
17£®£¨1£©ÇóÔÈÇ¿µç³¡EµÄ´óС£»
£¨2£©ÇóÔÈÇ¿´Å³¡BµÄ´óС£»
£¨3£©Èôµ±µç×Óµ½´ïMµãʱ£¬ÔÚÕý·½ÐÎÇøÓò»»¼ÓÈçͼÒÒËùʾÖÜÆÚÐԱ仯µÄ´Å³¡£¨ÒÔ´¹Ö±ÓÚÖ½ÃæÏòÍâΪ´Å³¡Õý·½Ïò£©£¬×îºóµç×ÓÔ˶¯Ò»¶Îʱ¼äºó´ÓNµã·É³ö£¬ÇóÕý·½Ðδų¡ÇøÓò´Å¸ÐӦǿ¶ÈB0´óСµÄ±í´ïʽ¡¢´Å³¡±ä»¯ÖÜÆÚTÓëB0µÄ¹ØÏµÊ½£®
·ÖÎö £¨1£©µç×ÓÔڵ糡ÖÐ×÷ÀàÆ½Å×Ô˶¯£¬¸ù¾ÝË®Æ½Î»ÒÆºÍÊúÖ±Î»ÒÆ£¬ÓÉÎ»ÒÆ¹«Ê½ºÍÅ£¶ÙµÚ¶þ¶¨ÂɽáºÏÇó½âÔÈÇ¿µç³¡µÄ³¡Ç¿£»
£¨2£©»³öµç×ÓÔڴų¡ÖеÄÔ˶¯¹ì¼££¬Óɼ¸ºÎ¹ØÏµÇó³ö¹ì¼£°ë¾¶£¬ÓÉÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦ÁÐʽ£¬Çó½âBµÄ´óС£®
£¨3£©Ôڴų¡±ä»¯µÄ°ë¸öÖÜÆÚÄÚµç×ӵį«×ª½ÇΪ60¡ã£¬Óɼ¸ºÎ֪ʶµÃµ½Ôڴų¡±ä»¯µÄ°ë¸öÖÜÆÚÄÚ£¬Á£×ÓÔÚxÖá·½ÏòÉϵÄÎ»ÒÆµÈÓÚµç×ӵĹ켣°ë¾¶R£¬ÓÉÌâÒ⣬Á£×Óµ½´ïNµã¶øÇÒËÙ¶È·ûºÏÒªÇóµÄ¿Õ¼äÌõ¼þÊÇ£ºnR=2L£¬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵõ½°ë¾¶R=$\frac{mv}{e{B}_{0}^{\;}}$£¬ÁªÁ¢µÃµ½´Å¸ÐӦǿ¶ÈB0µÄ´óС±í´ïʽ£®
½â´ð ½â£º£¨1£©µç×ӷɳöµç³¡µÄ·½ÏòÓëxÖá³É30¡ã![]()
¸ù¾Ý¼¸ºÎ¹ØÏµ$\frac{{v}_{y}^{\;}}{{v}_{0}^{\;}}=tan30¡ã$
ÊúÖ±·ÖËÙ¶È ${v}_{y}^{\;}=\frac{eE}{m}t$
Ë®Æ½Î»ÒÆ $L={v}_{0}^{\;}t$
½âµÃ£º$E=\frac{\sqrt{3}m{v}_{0}^{2}}{eL}$
£¨2£©Éèµç×Ó½øÈë´Å³¡µÄËÙ¶ÈΪv£¬Ôò$\frac{{v}_{0}^{\;}}{v}=cos30¡ã$
Óɼ¸ºÎ¹ØÏµµÃ$\frac{\frac{L}{2}}{R}=cos30¡ã$
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɵÃ$Bev=m\frac{{v}_{\;}^{2}}{R}$
½âµÃ£º$B=\frac{2m{v}_{0}^{\;}}{eL}$
£¨3£©Èôµç×Ó´ÓNµã·É³ö£¬Ôڴų¡ÖеÄÔ˶¯ÈçͼËùʾ![]()
ÓÖ¸ù¾Ý±ß½Ç¹ØÏµ¿ÉµÃ
nR=2L£¨n=1£¬2£¬3¡£©
$n\frac{2m{v}_{0}^{\;}}{e{B}_{0}^{\;}\sqrt{3}}=2L$£¨n=1¡¢2¡¢3¡£©
ÕûÀíµÃ${B}_{0}^{\;}=n\frac{\sqrt{3}m{v}_{0}^{\;}}{3eL}$£¨n=1¡¢2¡¢3¡£©
´ð£º£¨1£©ÔÈÇ¿µç³¡EµÄ´óС$\frac{\sqrt{3}m{v}_{0}^{2}}{eL}$£»
£¨2£©ÔÈÇ¿´Å³¡BµÄ´óС$\frac{2m{v}_{0}^{\;}}{eL}$£»
£¨3£©Èôµ±µç×Óµ½´ïMµãʱ£¬ÔÚÕý·½ÐÎÇøÓò»»¼ÓÈçͼÒÒËùʾÖÜÆÚÐԱ仯µÄ´Å³¡£¨ÒÔ´¹Ö±ÓÚÖ½ÃæÏòÍâΪ´Å³¡Õý·½Ïò£©£¬×îºóµç×ÓÔ˶¯Ò»¶Îʱ¼äºó´ÓNµã·É³ö£¬Õý·½Ðδų¡ÇøÓò´Å¸ÐӦǿ¶ÈB0´óСµÄ±í´ïʽ¡¢´Å³¡±ä»¯ÖÜÆÚTÓëB0µÄ¹ØÏµÊ½${B}_{0}^{\;}=n\frac{\sqrt{3}m{v}_{0}^{\;}}{3eL}$£¨n=1¡¢2¡¢3¡£©£®
µãÆÀ µç×ÓÔڵ糡ÖУ¬¹Ø¼üÊǽ«Á£×ÓµÄÔ˶¯ÑØ×Åˮƽ·½ÏòºÍÊúÖ±·½ÏòÕý½»·Ö½â£¬È»ºó¸ù¾ÝÅ£¶ÙÔ˶¯¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½ÁÐʽ·ÖÎöÇó½â£»Ôڴų¡ÖУ¬¹Ø¼üÒª»³ö¹ì¼£Í¼·ÖÎö£¬ÌرðÊǵÚÈýСÌ⣬ҪץסÖÜÆÚÐÔ£¬¸ù¾Ý¼¸ºÎ¹ØÏµÇó½âµç×ӵİ뾶Âú×ãµÄÌõ¼þ£®
| A£® | ÊäµçÏßÉϵĵçÁ÷Ϊ5 A | |
| B£® | ÊäµçÏßÉϵĵçÁ÷Ϊ10 A | |
| C£® | ÈôÉýѹºó½øÐÐÔ¶¾àÀëÊäµç£¬Ö»Ôö´ón1¿É½µµÍÊäµçËðºÄ | |
| D£® | ÈôÉýѹºó½øÐÐÔ¶¾àÀëÊäµç£¬Ö»Ôö´ón2¿É½µµÍÊäµçËðºÄ |
| A£® | µçѹ±íʾÊýΪ9V | |
| B£® | RT´¦Î¶ÈÉý¸ßʱ£¬µçÁ÷±íËùʾ±äС | |
| C£® | RT´¦Î¶ÈÉý¸ßʱ£¬µçѹ±íËùʾ±ä´ó | |
| D£® | RT´¦Î¶ÈÉý¸ßµ½Ò»¶¨ÖµÊ±£¬±¨¾¯Æ÷P½«»á·¢³ö¾¯±¨Éù |
| A£® | µÆL½«»á±»ÉÕ»µ | B£® | µÆLÒ²ÄÜÕý³£·¢¹â | ||
| C£® | µÆL±ÈÁíÍâÈý¸öµÆ¶¼°µ | D£® | ²»ÄÜÈ·¶¨ |
| A£® | x2´¦³¡Ç¿´óСΪ$\frac{kQ}{x_2^2}$ | |
| B£® | ÇòÄÚ²¿µÄµç³¡ÎªÔÈÇ¿µç³¡ | |
| C£® | x1¡¢x2Á½µã´¦µÄµç³¡Ç¿¶ÈÏàͬ | |
| D£® | ¼ÙÉ轫ÊÔ̽µçºÉÑØxÖáÒÆ¶¯£¬Ôò´Óx1ÒÆµ½R´¦ºÍ´ÓRÒÆµ½x2´¦µç³¡Á¦×ö¹¦Ïàͬ |
| A£® | ÖØÁ¦ÊÆÄܼõÉÙ£¬¶¯ÄܼõÉÙ | B£® | ÖØÁ¦ÊÆÄܼõÉÙ£¬¶¯ÄÜÔö¼Ó | ||
| C£® | ÖØÁ¦ÊÆÄÜÔö¼Ó£¬¶¯ÄܼõÉÙ | D£® | ÖØÁ¦ÊÆÄÜÔö¼Ó£¬¶¯ÄÜÔö¼Ó |