ÌâÄ¿ÄÚÈÝ
14£®£¨1£©ÇóÇøÓòIÖдŸÐӦǿ¶ÈB1µÄ´óС£»
£¨2£©Çó»·ÐÎÇøÓòIIÖдŸÐӦǿ¶ÈB2µÄ´óС¡¢·½Ïò£»
£¨3£©ÈôҪʹÁ£×ÓÔ¼ÊøÔڴų¡ÄÚ£¬Çó´óÔ²°ë¾¶RµÄ×îСֵ£»
£¨4£©ÇóÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄÖÜÆÚT£®
·ÖÎö £¨1£©Á£×Ó½øÈë´Å³¡¢ñ×öÔ²ÖÜÔ˶¯£¬Óɼ¸ºÎ¹ØÏµÇó³ö¹ì¼£°ë¾¶£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇó½â´Å¸ÐӦǿ¶ÈB1µÄ´óС£»
£¨2£©ÔÚ»·ÐÎÇøÓò¢òÖУ¬µ±Á£×ÓµÄÔ˶¯¹ì¼£ÓëÍâÔ²ÏàÇУ¬»³ö¹ì¼££¬Óɼ¸ºÎ¹ØÏµÇó½â¹ì¼£°ë¾¶£¬ÔÙÇó½âB2µÄ´óС£®
£¨3£©×÷³öÁ£×ÓÔ˶¯¹ì¼££¬Çó³öÁ£×Ó¹ìµÀ°ë¾¶£®
£¨4£©¸ù¾ÝÁ£×ÓÔ˶¯µÄ¹ì¼£Ëù¶ÔÓ¦µÄÔ²ÐĽǣ¬ÔÙÇó½âÔ˶¯ÖÜÆÚ£®
½â´ð ½â£º£¨1£©ÉèÔÚÇøÓò¢ñÄڹ켣Բ°ë¾¶Îªr1=r£»
ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãºqv0B1=m$\frac{{v}_{0}^{2}}{{r}_{1}}$£¬
½âµÃ£ºB1=$\frac{m{v}_{0}}{qr}$£»
£¨2£©ÉèÁ£×ÓÔÚÇøÓò¢òÖеĹ켣Բ°ë¾¶Îªr2£¬²¿·Ö¹ì¼£ÈçͼËùʾ£º![]()
Óɼ¸ºÎ¹ØÏµÖª£ºr2=$\frac{\sqrt{3}}{3}$r1£¬
ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãºqv0B2=m$\frac{{v}_{0}^{2}}{{r}_{2}}$£¬
ËùÒÔ£ºB2=$\sqrt{3}$B1=$\frac{\sqrt{3}m{v}_{0}}{qr}$£¬·½ÏòÓëB1Ïà·´£¬¼´´¹Ö±xoyÆ½ÃæÏòÍ⣻
£¨3£©Óɼ¸ºÎ¹ØÏµµÃ£ºR=2r2+r2=3r2£¬
¼´£ºR=$\sqrt{3}$r£»
£¨4£©¹ì¼£´ÓAµãµ½Qµã¶ÔÓ¦Ô²ÐĽǦÈ=90¡ã+60¡ã=150¡ã£¬ÒªÈÔ´ÓAµãÑØyÖḺ·½ÏòÉäÈ룬ÐèÂú×㣻
150n=360m£¬m¡¢nÊôÓÚ×ÔÈ»Êý£¬¼´È¡×îСÕûÊým=5£¬n=12£¬
T=12¡Á£¨$\frac{1}{4}$T1+$\frac{2}{3}$T2£©£¬ÆäÖУºT1=$\frac{2¦Ðm}{q{B}_{1}}$£¬T2=$\frac{2¦Ðm}{q{B}_{2}}$£¬
½âµÃ£ºT=£¨$\frac{16\sqrt{3}}{3}$+6£©$\frac{¦Ðr}{{v}_{0}}$£®
´ð£º£¨1£©ÇøÓòIÖдŸÐӦǿ¶ÈB1µÄ´óСΪ$\frac{m{v}_{0}}{qr}$£»
£¨2£©»·ÐÎÇøÓòIIÖдŸÐӦǿ¶ÈB2µÄ´óСΪ$\frac{\sqrt{3}m{v}_{0}}{qr}$£¬·½Ïò£º´¹Ö±ÓÚÖ½ÃæÏòÍ⣻
£¨3£©ÈôҪʹÁ£×ÓÔ¼ÊøÔڴų¡ÄÚ£¬´óÔ²°ë¾¶RµÄ×îСֵΪ$\sqrt{3}$r£»
£¨4£©Á£×ÓÔڴų¡ÖÐÔ˶¯µÄÖÜÆÚTΪ£¨$\frac{16\sqrt{3}}{3}$+6£©$\frac{¦Ðr}{{v}_{0}}$£®
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÕÆÎÕ´øµçÁ£×ÓÔÚÓнç´Å³¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯Ê±£¬ÈçºÎÈ·¶¨Ô²ÐÄ¡¢°ë¾¶£®
| A£® | »¬¿é¾bµãʱµÄËÙ¶È´óÓÚ$\sqrt{gh+{v}^{2}}$ | |
| B£® | »¬¿é´Óbµ½cÔ˶¯µÄ¹ý³Ì¿Ë·þ×èÁ¦×öµÄ¹¦Ò»¶¨µÈÓÚ$\frac{mgh}{2}$ | |
| C£® | »¬¿éµÄ¶¯ÄÜʼÖÕ±£³Ö²»±ä | |
| D£® | »¬¿é¾bµãʱµÄËٶȵÈÓÚ$\sqrt{2gh+{v}^{2}}$ |
| A£® | Èô΢Á£´øÕýµçºÉ£¬ÔòA°åÒ»¶¨´øÕýµçºÉ | |
| B£® | ΢Á£´ÓMµãÔ˶¯µ½NµãµçÊÆÄÜÒ»¶¨¼õÉÙ | |
| C£® | ΢Á£´ÓMµãÔ˶¯µ½Nµã¶¯ÄÜÒ»¶¨Ôö¼Ó | |
| D£® | ÈôÖ»¸Ä±ä´øµç΢Á£µÄµçÐÔ£¬Î¢Á£¿ÉÄÜÔÚÆ½Ðаå¼ä×öÖ±ÏßÔ˶¯ |
| A£® | AÊܵ½µÄÖ§³ÖÁ¦ | B£® | AÊܵ½µÄ¾²Ä¦²ÁÁ¦ | ||
| C£® | AÊܵ½µÄÖØÁ¦ | D£® | Ð±Ãæ¶ÔµØÃæÏòϵÄѹÁ¦ |