ÌâÄ¿ÄÚÈÝ
5£®Ì«ÑôϵÖеĵڶþ´óÐÐÐÇ--ÍÁÐǵÄÎÀÐÇÖڶ࣬ĿǰÒÑ·¢ÏÖÊýÊ®¿Å£®Ï±íÊÇÓйØÍÁÎÀÎåºÍÍÁÎÀÁùÁ½¿ÅÎÀÐǵÄһЩ²ÎÊý£®ÔòÁ½ÎÀÐÇÏà±È½Ï£¬ÏÂÁÐÅжÏÕýÈ·µÄÊÇ£¨¡¡¡¡£©| ÎÀÐÇ | ¾àÍÁÐǵľàÀë/km | °ë¾¶/km | ÖÊÁ¿/kg | ·¢ÏÖÕß |
| ÍÁÎÀÎå | 527 000 | 765 | 2.49¡Á1021 | ¿¨Î÷Äá |
| ÍÁÎÀÁù | 1 222 000 | 2 575 | 1.35¡Á1023 | »Ý¸ü˹ |
| A£® | ÍÁÎÀÎåµÄ¹«×ªÖÜÆÚ½ÏС | B£® | ÍÁÎÀÁùµÄת¶¯½ÇËٶȽϴó | ||
| C£® | ÍÁÎÀÁùµÄÏòÐļÓËٶȽÏС | D£® | ÍÁÎÀÎåµÄ¹«×ªËٶȽϴó |
·ÖÎö ÓÉ¿ªÆÕÀÕµÚÈý¶¨ÂÉ·ÖÎö¹«×ªÖÜÆÚµÄ´óС£®ÓÉÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦£¬±È½ÏÏßËٶȵĴóС¡¢ÏòÐļÓËÙ¶ÈÒÔ¼°½ÇËٶȵĴóС£®
½â´ð ½â£ºÉèÍÁÐǵÄÖÊÁ¿ÎªM£¬
A¡¢ÓÉ¿ªÆÕÀÕµÚÈý¶¨ÂÉ$\frac{{R}^{3}}{{T}^{2}}=k$¿ÉÖª£¬°ë¾¶Ô½´ó£¬ÖÜÆÚÔ½´ó£¬ËùÒÔÍÁÎÀÎåµÄ¹«×ªÖÜÆÚС£®¹ÊAÕýÈ·£®
B¡¢ÓÉÎÀÐǽÇËٶȹ«Ê½¦Ø=$\sqrt{\frac{GM}{{R}^{3}}}$¿ÉÖª£¬¹«×ª°ë¾¶RԽС£¬½ÇËٶȦØÔ½´ó£¬ÔòÍÁÎÀÎåµÄ¹«×ª½ÇËÙ¶È´ó£®¹ÊB´íÎó£®
C¡¢ÓÉÎÀÐÇÏòÐļÓËٶȹ«Ê½$a=\frac{GM}{{R}^{2}}$¿ÉÖª£¬¹«×ª°ë¾¶RԽС£¬ÏòÐļÓËÙ¶ÈÔ½´ó£¬ÔòÍÁÎÀÁùµÄÏòÐļÓËٶȽÏС£®¹ÊCÕýÈ·£®
D¡¢ÓÉÎÀÐÇËٶȹ«Ê½v=$\sqrt{\frac{GM}{R}}$¿ÉÖª£¬¹«×ª°ë¾¶RÔ½´ó£¬ÎÀÐǵÄÏßËÙ¶ÈԽС£¬ÔòÍÁÎÀÎåµÄ¹«×ªËٶȽϴ󣮹ÊDÕýÈ·£®
¹ÊÑ¡£ºACD
µãÆÀ ±¾ÌâÊÇÎÀÐÇÀàÐÍ£¬ÔÚ½¨Á¢ÎïÀíÄ£Ð͵Ļù´¡ÉÏ£¬ÔËÓÃÍòÓÐÒýÁ¦¶¨ÂɺÍÔ²ÖÜÔ˶¯ÖªÊ¶½áºÏÑо¿£¬ÄѶÈÊÊÖУ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
15£®ÎïÌå´Ó¾²Ö¹¿ªÊ¼×öÔȼÓËÙÖ±ÏßÔ˶¯£¬´ÓÁãʱ¿Ì¿ªÊ¼£¬Á¬ÐøÍ¨¹ýÈý¶ÎÎ»ÒÆÊ±¼ä·Ö±ðΪ1Ãë¡¢2Ãë¡¢3Ã룮ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | Èý¶ÎÎ»ÒÆÖ®±ÈΪ1£º8£º27 | B£® | Èý¶ÎÎ»ÒÆµÄÄ©ËÙ¶ÈÖ®±ÈΪ1£º2£º3 | ||
| C£® | Èý¶ÎÎ»ÒÆµÄƽ¾ùËÙ¶ÈÖ®±ÈΪ1£º8£º27 | D£® | Èý¶ÎÎ»ÒÆµÄƽ¾ùËÙ¶ÈÖ®±ÈΪ1£º3£º5 |
13£®¹ØÓÚÖʵã×öÇúÏßÔ˶¯µÄÃèÊöÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | ÇúÏßÔ˶¯Ò»¶¨ÊDZäËÙÔ˶¯ | |
| B£® | ±äËÙÔ˶¯Ò»¶¨ÊÇÇúÏßÔ˶¯ | |
| C£® | ÔÚÆ½ºâÁ¦µÄ×÷ÓÃÏ£¬ÎïÌå¿ÉÒÔ×öÇúÏßÔ˶¯ | |
| D£® | Öʵã×öÇúÏßÔ˶¯Ê±ËùÊܵĺÏÁ¦·½Ïò£¬ÓëËÙ¶È·½ÏòÔÚͬһֱÏßÉÏ |
10£®
ÎÒ¹ú¡°òÔÁúºÅ¡±ÉîDZÆ÷ÒÔ7062mÉî¶È´´ÔØÈËÏÂDZÊÀ½ç¼Í¼£¬Ô¤Ê¾×Å¿ÉÒÔÕ÷·þÈ«Çò99.8%µÄº£µ×ÊÀ½ç£¬ÔÚij´ÎʵÑéʱ£¬ÉîDZÆ÷ÄÚµÄÏÔʾÆÁÉÏÏÔʾ³öÁË´ÓË®Ãæ¿ªÊ¼ÏÂDZµ½×îºó·µ»ØË®Ãæ10minÄÚÈ«¹ý³ÌµÄËÙ¶È-ʱ¼äͼÏó£¬ÓÉͼ¿ÉÖª£¨¡¡¡¡£©
| A£® | ±¾´ÎʵÑéÏÂDZ×î´óÉî¶ÈΪ6m | |
| B£® | È«¹ý³ÌÖÐ×î´ó¼ÓËٶȵĴóСÊÇ2m/s2 | |
| C£® | ´Ó¿ªÊ¼µ½·µ»ØÍ¨¹ýµÄ×Ü·³ÌΪ720m | |
| D£® | ÏÂDZ¹ý³ÌÓë·µ»Ø¹ý³ÌµÄƽ¾ùËÙ¶ÈÏàͬ |
17£®
ÈçͼËùʾ£¬Ôڹ⻬¾øÔµË®Æ½ÃæÉÏ£¬Èý¸ö´øµçСÇòa¡¢bºÍc·Ö±ðλÓڱ߳¤ÎªLµÄÕýÈý½ÇÐεÄÈý¸ö¶¥µãÉÏ£¬a¡¢b´ø¸ºµç£¬µçºÉÁ¿¾ùΪ-q£¬c´øÕýµç£®Õû¸öϵͳÖÃÓÚˮƽ·½ÏòµÄÔÈÇ¿µç³¡ÖУ®ÒÑÖª¾²µçÁ¦³£Á¿Îªk£®ÈôÈý¸öСÇò¾ù´¦ÓÚ¾²Ö¹×´Ì¬£¬ÔòÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | ³¡Ç¿EµÄ´óСµÈÓÚ$\frac{2\sqrt{3}kq}{{L}^{2}}$£¬ÇÒÄÜÍÆËã³öCµÄµçºÉÁ¿ | |
| B£® | ³¡Ç¿EµÄ´óСµÈÓÚ$\frac{\sqrt{3}kq}{{L}^{2}}$£¬²»ÄÜÍÆËã³öCµÄµçºÉÁ¿ | |
| C£® | ³¡Ç¿EµÄ´óСµÈÓÚ$\frac{2\sqrt{3}kq}{{L}^{2}}$£¬·½ÏòÓÉCµã´¹Ö±Ö¸ÏòabÁ¬Ïß | |
| D£® | ³¡Ç¿EµÄ´óСµÈÓÚ$\frac{\sqrt{3}kq}{{L}^{2}}$£¬·½Ïò´¹Ö±Í¨¹ýabÁ¬ÏßÖ¸ÏòCµã |