题目内容

8.为了测量某高内阻电源的电动势E和内阻r(电动势约5V、内电阻约500Ω),现提供下列器材:
A.待测电源                           B.电感表V(0-3V,内阻约几千欧)
C.电流表A(10mA,RA=10Ω)            D.电阻箱R0(0-9999.9Ω)
E.滑动变阻器R1(0-20Ω)              F.滑动变阻器R2(0-1000Ω)
G.开关及导线                         H.干电池若干节(内阻很小)首先测定其内阻

(1)实验中需要将电压表改装.首先测定其内阻,某同学采用图甲所示的电路,电源为干电池组,开关S闭合前,电阻箱R0的阻值应该调到最大(选填“零”或“最大”).闭合开关,调节电阻箱,当电压表指针满偏时,阻值为R01=2950Ω;当电压表指针半偏时,阻值为R02=8900Ω.则电压表内阻RV=3000Ω.
(2)采用图乙所示电路测量电源电动势和内阻.电阻箱R0与电压表串联构成量程为6V的电压表,测R0=3000Ω;滑动变阻器应选R2(选填“R1”或“R2”).
(3)根据实验测得数据,作出电源路端电压U和电流I变化的图象如图丙所示,由图象可知E=5.0V,r=490Ω.

分析 (1)根据闭合电路定律,抓住电源的外电压不变,求出电压表的内阻.
(2)电压表改装串联电阻起分压作用,根据串并联电路的特点,根据欧姆定律求出R0的值.从减小测量误差的角度选择滑动变阻器.
(3)在U-I图线中,纵轴截距表示电动势,图线斜率的绝对值表示内阻.

解答 解:(1)开关S闭合前,电阻箱R0的阻值应该调到最大.
根据欧姆定律得,当满偏时有U=IM(R01+RV),
当半偏时有:$U=\frac{{I}_{m}}{2}({R}_{02}+{R}_{V})$
则${R}_{01}+{R}_{V}=\frac{1}{2}({R}_{02}+{R}_{V})$,
解得RV=3000Ω.
(2)将电压表改装成量程为6V的电压表,根据欧姆定律得,${R}_{0}=\frac{U}{{I}_{m}}-{R}_{V}$,${I}_{m}=\frac{U′}{{R}_{V}}$.U=6V,U′=3V,
代入计算,解得R0=3000Ω.
因为电源的内阻大约在500Ω,为了减小测量的误差,使得电压表和电流表示数变化明显一些,滑动变阻器选择R2
(3)纵轴截距表示电动势,所以E=5.0V,图线斜率的绝对值为内电阻,则r=$\frac{5-1}{8×1{0}^{-3}}=500Ω$.而电源的内阻需减去电流表的内阻,为490Ω.
故答案为:(1)最大,3000 (2)3000 R2 (3)5.0,490

点评 解决本题的关键掌握电表的改装,以及测量电压电动势和内阻的原理,会运用图象法求电动势和内电阻.

练习册系列答案
相关题目
20.电磁阻尼制动是一种利用电磁感应原理工作的新型制动方式,它的基本原理如图甲所示.水平面上固定一块铝板,当一竖直方向的条形磁铁在铝板上方几毫米高度上水平经过时,铝板内感应出的电流会对磁铁的运动产生阻碍作用.电磁阻尼制动是磁悬浮列车在高速运行时进行制动的一种方式,某研究所制成如图乙所示的车和轨道模型来定量模拟磁悬浮列车的制动过程.车厢下端安装有电磁铁系统,能在长为L1=0.6m,宽L2=0.2m的矩形区域内产生竖直方向的匀强磁场,磁感应强度可随车速的减小而自动增大(由车内速度传感器控制),但最大不超过B1=2T,将铝板简化为长大于L1,宽也为L2的单匝矩形线圈,间隔铺设在轨道正中央,其间隔也为L2,每个线圈的电阻为R1=0.1Ω,导线粗细忽略不计.在某次实验中,模型车速度为v0=20m/s时,启动电磁铁系统开始制动,车立即以加速度a1=2m/s2做匀减速直线运动,当磁感应强度增加到B1时就保持不变,直到模型车停止运动.已知模型车的总质量为m1=36kg,空气阻力不计.不考虑磁感应强度的变化引起的电磁感应现象以及线圈激发的磁场对电磁铁产生磁场的影响.

(1)电磁铁的磁感应强度达到最大时,模型车的速度v1为多大?
(2)模型车的制动距离为多大?
(3)某同学受到上述装置的启发,设计了进一步提高制动效果的方案如下,将电磁铁换成多个并在一起的永磁铁组,两个相邻的磁铁磁极的极性相反,且将线圈改为连续铺放,相邻线圈接触紧密但彼此绝缘,如图丙所示,若永磁铁激发的磁感应强度恒定为B2,模型车质量m1及开始减速的初速度v0均不变,试通过必要的公式分析这种设计在提高制动能力上的合理性.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网