ÌâÄ¿ÄÚÈÝ

18£®º½Ìì·ÉÀÂÊÇÓÃÈáÐÔÀÂË÷½«Á½¸öÎïÌåÁ¬½ÓÆðÀ´ÔÚÌ«¿Õ·ÉÐеÄϵͳ£®·ÉÀÂϵͳÔÚÌ«¿Õ·ÉÐÐÖÐÄÜΪ×ÔÉíÌṩµçÄܺÍÍÏ×§Á¦£¬Ëü»¹ÄÜÇåÀí¡°Ì«¿ÕÀ¬»ø¡±µÈ£®´Ó1967ÄêÖÁ1999Äê17´ÎÊÔÑéÖУ¬·ÉÀÂϵͳÊÔÑéÒÑ»ñµÃ²¿·Ö³É¹¦£®¸ÃϵͳµÄ¹¤×÷Ô­Àí¿ÉÓÃÎïÀíѧµÄÏà¹Ø¹æÂÉÀ´½âÊÍ£®ÈçͼËùʾΪ·ÉÀÂϵͳµÄ¼ò»¯Ä£ÐÍʾÒâͼ£¬Í¼ÖÐÁ½¸öÎïÌåP¡¢QÓó¤ÎªlµÄÈáÐÔ½ðÊôÀÂË÷Á¬½Ó£¬ÍâÓоøÔµ²ã£¬ÏµÍ³ÈƵØÇò×÷Ô²ÖÜÔ˶¯£¬Ô˶¯Ò»ÖܵÄʱ¼äΪT£¬Ô˶¯¹ý³ÌÖÐQ¾àµØÃæ¸ßΪh£®·ÉÀÂÏµÍ³ÑØÍ¼Ê¾·½ÏòÔڵشų¡ÖÐÔ˶¯£¬ÀÂË÷×ܱ£³ÖÖ¸ÏòµØÐÄ£¬µØ´Å³¡ÔÚÀÂË÷ËùÔÚ´¦µÄ´Å¸ÐӦǿ¶È´óСΪB£¬·½Ïò´¹Ö±ÓÚÖ½ÃæÏòÍ⣮ÒÑÖªµØÇò°ë¾¶ÎªR£¬µØÃæµÄÖØÁ¦¼ÓËÙ¶ÈΪg£®²»¿¼ÂǵØÇò×Ôת£¬¿ÉÈÏΪÀÂË÷Çиî´Å¸ÐÏßµÄËٶȵÈÓÚÀÂË÷ÖеãµÄËÙ¶È£®
£¨1£©ÉèÀÂË÷ÖÐÎÞµçÁ÷£¬ÎÊÀÂË÷P¡¢QÄĶ˵çÊÆ¸ß£¿ÇóP¡¢QÁ½¶ËµÄµçÊÆ²î£»
£¨2£©ÉèÀÂË÷µÄµç×èΪR1£¬Èç¹ûÀÂË÷Á½¶ËÎïÌåP¡¢Qͨ¹ýÖÜΧµÄµçÀë²ã·ÅµçÐγɵçÁ÷£¬ÏàÓ¦µÄµç×èΪR2£¬ÇóÀÂË÷ËùÊܵݲÅàÁ¦¶à´ó£»
£¨3£©ÈôÎïÌåQµÄÖÊÁ¿ÎªmQ£¬ÇóÀÂË÷¶ÔQµÄÀ­Á¦FQ£®

·ÖÎö £¨1£©¸ù¾ÝÓÒÊÖ¶¨ÔòÅжϳöµ¼Ìå°ôÇиî´Å¸ÐÏßµçÁ÷·½Ïò£¬¼´¿ÉÅжÏÄĵãµçÊÆ¸ß£¬×¢ÒâÔÚµçÔ´ÄÚ²¿µçÁ÷Óɸº¼«Á÷ÏòÕý¼«£¬¸ù¾ÝE=BLv¼´¿ÉÇó³öµçÊÆ²î£®
£¨2£©Çó³öP¡¢QÁ½¶ËµÄµçÊÆ²î¸ù¾Ý±ÕºÏµç·ŷķ¶¨ÂÉÇó³öÁ÷¹ýÀÂË÷µÄµçÁ÷£¬¸ù¾Ý°²ÅàÁ¦¹«Ê½¼´¿ÉÇóµÃ½á¹û£®
£¨3£©¶ÔQ½øÐÐÊÜÁ¦·ÖÎö£¬¸ù¾ÝÊÜÁ¦Æ½ºâ¼´¿É½â³ö½á¹û£¬×¢ÒâP¡¢QµÄ½ÇËÙ¶ÈÏàµÈ£®

½â´ð ½â£º£¨1£©ÓÉÓÒÊÖ¶¨Ôò¿ÉÒÔÅж¨PµãµçÊÆ¸ß£¬ÉèÀÂË÷ÖеãµÄËÙ¶ÈÉèΪV£¬ÓУº$v=\frac{{2¦Ð£¨R+h+\frac{l}{2}£©}}{T}$¡­¢Ù
P¡¢QÁ½µãµçÊÆ²î¾ÍÊÇÀÂË÷µÄµç¶¯ÊÆÎª£ºUPQ=E=BlvQ=$\frac{{2¦ÐBl£¨R+h+\frac{l}{2}£©}}{T}$¡­¢Ú
Áí½â£º$G\frac{Mm}{{{{£¨R+h+\frac{l}{2}£©}^2}}}=m\frac{v^2}{{R+h+\frac{l}{2}}}$$\frac{GMm}{R^2}=mg$$\frac{{g{R^2}}}{{R+h+\frac{l}{2}}}={v^2}$$v=\sqrt{\frac{{g{R^2}}}{{R+h+\frac{l}{2}}}}$

£¨2£©ÀÂË÷µçÁ÷Ϊ£ºI=$\frac{E}{{{R_1}+{R_2}}}$¡­¢Û
°²ÅàÁ¦Îª£ºFA=BIl¡­¢Ü
½«¢Ù¢Ú¢Û´úÈë¢Üʽ½âµÃFA=$\frac{{2¦Ð{B^2}{l^2}£¨R+h+\frac{l}{2}£©}}{{£¨{R_1}+{R_2}£©T}}$
£¨3£©QµÄËÙ¶ÈÉèΪvQ£¬QÊܵØÇòÒýÁ¦ºÍÀÂË÷À­Á¦FQ×÷Óã¬ÓУº
$\frac{{GM{m_Q}}}{{{{£¨R+h£©}^2}}}$-FQ=mQ$\frac{{{v_Q}^2}}{R+h}$¡­¢Ý
ÎïÌåQÈÆµØÇò×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÉèQµÄËÙ¶ÈÉèΪ£º${v_Q}=\frac{2¦Ð£¨R+h£©}{T}$¡­¢Þ

ÓÖ$\frac{GMm}{R^2}=mg$¡­¢ß
½«¢Þ¢ß´úÈë¢Ýʽ½âµÃ£ºFQ=mQ[$\frac{{g{R^2}}}{{{{£¨R+h£©}^2}}}$-$\frac{{4{¦Ð^2}£¨R+h£©}}{T^2}$]
´ð£º£¨1£©PµãµçÊÆ¸ß£»ÇóP¡¢QÁ½¶ËµÄµçÊÆ²îΪ$\frac{{2¦ÐBl£¨R+h+\frac{l}{2}£©}}{T}$£»
£¨2£©ÀÂË÷ËùÊܵݲÅàÁ¦Îª$\frac{{2¦Ð{B^2}{l^2}£¨R+h+\frac{l}{2}£©}}{{£¨{R_1}+{R_2}£©T}}$£»
£¨3£©ÀÂË÷¶ÔQµÄÀ­Á¦FQΪmQ[$\frac{{g{R^2}}}{{{{£¨R+h£©}^2}}}$-$\frac{{4{¦Ð^2}£¨R+h£©}}{T^2}$]£®

µãÆÀ ±¾Ìâ½èÖú¸ß¿Æ¼¼ÖªÊ¶¿¼²éÁ˵ç´Å¸ÐÓ¦ÓëÁ¦Ñ§Ïà½áºÏµÄÎÊÌ⣬³öÌâ½Ç¶ÈÐÂÓ±£¬ÔÚÆ½Ê±Ñ§Ï°ÖÐҪעÒâÓÃËùѧ֪ʶ½â¾öһЩÓëʵ¼ÊÏàÁªÏµµÄÎÊÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø