题目内容

9.如图,可自由移动的活塞将密闭气缸分为体积相等的上下两部分A和B,初始时A、B中密封的理想气体温度均为800K,B中气体压强P=1.25×l05 Pa,活塞质量m=2.5kg,气缸横截面积S=10cm2,气缸和活塞均由绝热材料制成.现利用控温装置(未画出)保持B中气体温度不变,缓慢降低A中气体温度,使A中气体体积变为原来的$\frac{3}{4}$,若不计活塞与气缸壁之间的摩擦,求稳定后A中气体的温度.(g=10m/s2

分析 根据玻意耳定律求出B中气体末态的压强,根据活塞的受力平衡分别求出A中气体初末状态的压强,再对A中的气体运用理想气体状态方程即可求解稳定后A中气体的温度.

解答 解:根据题意,A中气体的体积变为原来的$\frac{3}{4}$,则B中气体的体积${V}_{B}^{′}$变为原来体积${V}_{B}^{\;}$的$\frac{5}{4}$,即${V}_{B}^{′}=\frac{5}{4}{V}_{B}^{\;}$
B中气体发生等温变化,根据玻意耳定律有${p}_{B}^{\;}{V}_{B}^{\;}={p}_{B}^{′}{V}_{B}^{′}$
解得稳定后B中气体的压强${p}_{B}^{′}=1×1{0}_{\;}^{5}{p}_{a}^{\;}$
对A中气体,初态:${p}_{A}^{\;}={p}_{B}^{\;}-\frac{mg}{S}$=1×l05 Pa
末态:${p}_{A}^{′}={p}_{B}^{′}-\frac{mg}{S}$=0.75×105 Pa
对A中气体,由理想气体状态方程有
$\frac{{p}_{A}^{\;}{V}_{A}^{\;}}{T}=\frac{{p}_{A}^{′}{V}_{A}^{′}}{T′}$
解得T′=450 K
答:稳定后A中气体的温度为450K

点评 本题考查了气体实验定律和理想气体状态方程的应用,关键是确定两部分气体的初末状态的状态参量,选择合适的规律求解,同时要注意两部分气体状态参量间的联系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网