ÌâÄ¿ÄÚÈÝ
16£®£¨1£©´òµã¼ÆÊ±Æ÷´òϼÆÊýµãBʱ£¬ÖØ´¸ÏÂÂäµÄËÙ¶È vB=$\frac{{s}_{1}+{s}_{2}}{2T}$£¬´òµã¼ÆÊ±Æ÷´òϼÆÊýµãDʱ£¬ÖØ´¸ÏÂÂäµÄËÙ¶ÈvD=$\frac{{s}_{3}+{s}_{4}}{2T}$£®
£¨2£©´Ó´òϼÆÊýµãBµ½´òϼÆÊýµãDµÄ¹ý³ÌÖУ¬ÖØ´¸µÄ¶¯ÄÜÔö¼ÓÁ¿¡÷EK=$\frac{m£¨£¨{s}_{3}+{s}_{4}£©^{2}-£¨{s}_{1}+{s}_{2}£©^{2}£©}{8{T}^{2}}$
£¨3£©´Ó´òϼÆÊýµãBµ½´òϼÆÊýµãDµÄ¹ý³ÌÖУ¬ÖØ´¸µÄÖØÁ¦ÊÆÄܼõСÁ¿¡÷EP=mg£¨s2+s3£©£®ÔÚÎó²îÔÊÐí·¶Î§ÄÚ£¬Í¨¹ý±È½Ï¡÷EKºÍ¡÷EP¾Í¿ÉÒÔÑéÖ¤ÖØ´¸ÏÂÂä¹ý³ÌÖлúеÄÜÊØºãÁË£®
·ÖÎö ½â¾öʵÑéÎÊÌâÊ×ÏÈÒªÕÆÎÕ¸ÃʵÑéÔÀí£¬Á˽âʵÑéµÄÒÇÆ÷¡¢²Ù×÷²½ÖèºÍÊý¾Ý´¦ÀíÒÔ¼°×¢ÒâÊÂÏ
Ö½´ø·¨ÊµÑéÖУ¬ÈôÖ½´øÔȱäËÙÖ±ÏßÔ˶¯£¬²âµÃÖ½´øÉϵĵã¼ä¾à£¬ÀûÓÃÔȱäËÙÖ±ÏßÔ˶¯µÄÍÆÂÛ£¬¿É¼ÆËã³ö´ò³öijµãʱֽ´øÔ˶¯µÄ˲ʱËٶȺͼÓËÙ¶È£¬´Ó¶øÇó³ö¶¯ÄÜ£®¸ù¾Ý¹¦ÄܹØÏµµÃÖØÁ¦ÊÆÄܼõСÁ¿µÈÓÚÖØÁ¦×ö¹¦µÄÊýÖµ
½â´ð ½â£º£¨1£©£ºÀûÓÃÔȱäËÙÖ±ÏßÔ˶¯µÄÍÆÂÛ
vB=$\frac{{x}_{AC}}{{t}_{AC}}$=$\frac{{s}_{1}+{s}_{2}}{2T}$
vD=$\frac{{x}_{CE}}{{t}_{CE}}$=$\frac{{s}_{3}+{s}_{4}}{2T}$
£¨2£©´Ó´òϼÆÊýµãBµ½´òϼÆÊýµãDµÄ¹ý³ÌÖУ¬ÖØ´¸µÄ¶¯ÄÜÔö¼ÓÁ¿Îª£º
¡÷EK=EkD-EkB=$\frac{1}{2}$mvD2-$\frac{1}{2}$mvB2=$\frac{m£¨£¨{s}_{3}+{s}_{4}£©^{2}-£¨{s}_{1}+{s}_{2}£©^{2}£©}{8{T}^{2}}$
£¨3£©¸ù¾ÝÖØÁ¦ÊÆÄ͍ܵÒåʽ£¬´Ó´òϼÆÊýµãBµ½´òϼÆÊýµãDµÄ¹ý³ÌÖУ¬ÖØ´¸ÖØÁ¦ÊÆÄܼõСÁ¿Îª£º
¡÷EP=mgh=mg£¨s2+s3£©£®
¹Ê´ð°¸Îª£º£¨1£©$\frac{{s}_{1}+{s}_{2}}{2T}$£¬$\frac{{s}_{3}+{s}_{4}}{2T}$£»£¨2£©$\frac{m£¨£¨{s}_{3}+{s}_{4}£©^{2}-£¨{s}_{1}+{s}_{2}£©^{2}£©}{8{T}^{2}}$£»£¨3£©mg£¨s2+s3£©£®
µãÆÀ ÔËÓÃÔ˶¯Ñ§¹«Ê½ºÍ¶¯ÄÜ¡¢ÖØÁ¦ÊÆÄ͍ܵÒåʽ½â¾öÎÊÌâÊǸÃʵÑéµÄ³£¹æÎÊÌ⣮
¶ÔÓÚ×ÖĸµÄÔËËãҪϸÐĵ㣮
| A£® | µ±×÷ÓÃÁ¦×÷Õý¹¦Ê±£¬·´×÷ÓÃÁ¦Ò»¶¨×÷¸º¹¦ | |
| B£® | µ±×÷ÓÃÁ¦²»×÷¹¦Ê±£¬·´×÷ÓÃÁ¦Ò²²»×÷¹¦ | |
| C£® | ×÷ÓÃÁ¦×öÕý¹¦Ê±£¬·´×÷ÓÃÁ¦Ò²¿ÉÒÔ×öÕý¹¦ | |
| D£® | ×÷ÓÃÁ¦Óë·´×÷ÓÃÁ¦Ëù×öµÄ¹¦Ò»¶¨ÊÇ´óСÏàµÈ |
| A£® | ¦ØR | B£® | R$\sqrt{\frac{g}{2H}}$ | C£® | R$\sqrt{\frac{2g}{H}}$ | D£® | ¦ØH |
| A£® | P | B£® | P-$\frac{{P}^{2}}{{U}^{2}}$•r | C£® | P-$\frac{{U}^{2}}{r}$ | D£® | $\frac{{P}^{2}}{{U}^{2}}$•r |