题目内容

6.如图所示,一个物体(可视为质点)沿竖直放置的圆环的不同倾角的斜面下滑到圆环上的另一点,若开始均由顶点A从静止释放.则物体到达圆环的时间t(斜面粗糙时,μ是相同的)(  )
A.若斜面光滑,则斜面越陡(α越小),t越小
B.若斜面光滑,t均相等
C.若斜面光滑,则斜面越陡(α越小),t越大
D.若斜面粗糙,则斜面越陡(α越小),t越大

分析 物体运动的位移为x=2Rcosα,根据牛顿第二定律求出粗糙情况下的加速度,然后根据x=$\frac{1}{2}$at2比较运动的时间;光滑可以看作动摩擦因素为零.

解答 解:滑块受重力、支持力和滑动摩擦力,根据牛顿第二定律,有:
mgcosα-μmgsinα=ma
解得:a=g(cosα-μsinα)
物体运动的位移为x=2Rcosα,根据x=$\frac{1}{2}$at2得到:t=$\sqrt{\frac{2x}{a}}$;
A、若斜面光滑,则μ=0,则t为定值,与α无关,故AC错误,B正确;
D、若斜面粗糙但动摩擦因素相同,由公式可知,斜面越陡(α角越小),根据上述表达式,t越小,故D错误;
故选:B.

点评 本题是已知受力情况确定运动情况,关键求解出加速度和时间的表达式进行分析,即可求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网