题目内容

如图所示,光滑圆球的半径为10cm,悬线长为L=40cm,物体B的水平宽度为20cm,重为18N,B与墙壁间的动摩擦因数为0.3,若要使B在未脱离圆球时,沿墙匀速下滑,求:
(1)悬线与竖直墙之间的夹角θ.
(2)球对B物体的压力大小.
(3)球的重力.
分析:先由几何关系求出θ的大小,然后对物体B受力分析,由共点力的平衡列方程可得小球受到的摩擦力大小,由滑动摩擦力公式可求压力的大小、小球的重力.
解答:解:由已知有sinθ=
20+10
40+10
=
3
5
   θ=37°
滑块B受重力、球的压力、墙对小球的压力及向上的摩擦力;
竖直方向由共点力的平衡条件可得:f=mg=18N;
由f=μF得:F=
f
μ
=
18
0.3
=60N
对小球受力分析,如图所示,重力G=
F
tanθ
=
60
3
4
=80N
答:(1)悬线与竖直墙之间的夹角θ为37°.
(2)球对B物体的压力大小60N.
(3)球的重力80N.
点评:本题考查共点力的平衡条件的应用,在解题时要注意灵活选取研究对象;同时注意动摩擦力的中的压力为垂直于接触面的压力,而不是重力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网