题目内容
A、
| ||
B、
| ||
C、
| ||
| D、mgL |
分析:以链条为研究对象,在提起链条的过程中人与重力对链条做功,由动能定理可以求出人做的功.
解答:解:均匀链条的重心在其几何重心,重心到桌面的高度为
.
由动能定理可得:W-
m?g
=
mv2-0,将链条全部拉回桌面时,链条的速度为零,人所做的功最小,
W最小=
mgL;
故选:A.
| L |
| 4 |
由动能定理可得:W-
| 1 |
| 2 |
| L |
| 4 |
| 1 |
| 2 |
W最小=
| 1 |
| 8 |
故选:A.
点评:知道均匀项链的重心在其几何重心、应用动能定理求解变力做功.
练习册系列答案
相关题目
在倾角为30°的光滑斜面上垂直放置一根长为L、质量为m的直导体棒,一匀强磁场垂直于斜面向下,当导体棒内通有垂直纸面向里的电流I时,导体棒恰好静止在斜面上,则磁感应强度的大小为B=
.
| mg |
| 2IL |
| mg |
| 2IL |
A、B=
| ||
B、B=
| ||
C、B=
| ||
D、B=
|