ÌâÄ¿ÄÚÈÝ
11£®£¨1£©C¸Õ×ŵØÊ±µÄËÙ¶È£»
£¨2£©ÈôB²»ÄÜ×ŵأ¬Çó$\frac{M}{m}$Âú×ãµÄÌõ¼þ£»
£¨3£©ÈôBÄÜ×ŵأ¬Îï¿éA¾àÀë×î³õλÖÃÉÏÉýµÄ×î´ó¸ß¶È£®
·ÖÎö £¨1£©µ±CÎïÌå¸Õ×ŵØÊ±£¬¸ù¾Ýϵͳ»úеÄÜÊØºãÁÐʽÇó½â£»
£¨2£©CÂ䵨ºó£¬¸ù¾ÝABÁ½ÎïÌåϵͳ»úеÄÜÊØºã£¬Çó³öBÇ¡ºÃÂ䵨µÄÁÙ½çÌõ¼þ£¬ÔÙÅжÏMÓëmµÄ¹ØÏµ£»
£¨3£©Îï¿éB×ŵغó£¬A×öÊúÖ±ÉÏÅ×Ô˶¯£¬¸ù¾ÝÔ˶¯Ñ§¹«Ê½ÁÐʽÇó½â£®
½â´ð ½â£º£¨1£©¸ù¾ÝÌâÒâÓУ¬A¡¢B¡¢CÈýÎï¿éϵͳ»úеÄÜÊØºã£®B¡¢CϽµL£¬AÉÏÉýLʱA¡¢B¡¢CÈý¶¼ËÙ¶È´óСÏàµÈ£¬¸ù¾Ý»úеÄÜÊØºãÓУº
2mgL-MgL=$\frac{1}{2}£¨2m+M£©{v}^{2}$
µÃv=$\sqrt{\frac{2£¨2m-M£©gL}{2m+M}}$
£¨2£©µ±C×ŵغó£¬ÈôBÇ¡ÄÜ×ŵأ¬¼´BÎï¿éϽµLʱËÙ¶ÈΪÁ㣮A¡¢BÁ½ÎïÌåϵͳ»úеÄÜÊØºã£®
MgL-mgL=$\frac{1}{2}$£¨M+m£©v2
½«v´úÈ룬ÕûÀíµÃ£ºM=$\sqrt{2}m$
¹Êµ±$\frac{M}{m}£¾\sqrt{2}$ʱ£¬BÎï¿é½«²»»á×ŵأ®
£¨3£©ÓÉ£¨2£©·ÖÎöÖª£¬Èô$\frac{M}{m}£¼\sqrt{2}$£¬BÎïÌå×ŵغó£¬A»¹»áÏÖÉÏÉýÒ»¶Î£¬ÉèÉÏÉýµÄ¸ß¶ÈΪh£¬B×ŵØÊ±ABÕûÌåµÄ=ËÙ¶È´óСΪv1£¬´ÓC×ŵØÖÁB×ŵعý³ÌÖиù¾Ý¶¯Äܶ¨Àí¿ÉµÃ£º
$-MGL+mgL=\frac{1}{2}£¨M+m£©£¨{v}_{1}^{2}-{v}^{2}£©$
µÃ£º${v}_{1}^{2}=\frac{4£¨2{m}^{2}-{M}^{2}£©gL}{£¨m+M£©£¨2m+M£©}$
B×ŵغóA¼ÌÐøÉÏÉýµÄ¸ß¶È
$h=\frac{{v}_{1}^{2}}{2g}$=$\frac{2£¨2{m}^{2}-{M}^{2}£©L}{£¨m+M£©£¨2m+M£©}$
ËùÒÔAÉÏÉýµÄ×î´ó¸ß¶ÈH=2L+h=2L+$\frac{2£¨2{m}^{2}-{M}^{2}£©L}{£¨m+M£©£¨2m+M£©}$
´ð£º£¨1£©C¸Õ×ŵØÊ±µÄËÙ¶Èv=$\sqrt{\frac{2£¨2m-M£©gL}{2m+M}}$£»
£¨2£©ÈôB²»ÄÜ×ŵأ¬ÇóM/mÂú×ã$\frac{M}{m}£¾\sqrt{2}$£»
£¨3£©ÈôBÄÜ×ŵأ¬Îï¿éA¾àÀë×î³õλÖÃÉÏÉýµÄ×î´ó¸ß¶È2L+$\frac{2£¨2{m}^{2}-{M}^{2}£©L}{£¨m+M£©£¨2m+M£©}$£®
µãÆÀ ±¾Ìâ¹Ø¼üÊÇÒªÁé»îµØÑ¡ÔñÑо¿¶ÔÏó£¬ËäÈ»µ¥¸öÎïÌå»úеÄܲ»Êغ㣬µ«ÏµÍ³»úеÄÜÊØºã£»Òª×¢ÒâÕýÈ·Ñ¡ÔñÑо¿¶ÔÏó£®
| A£® | ËÙ¶È·½ÏòÒ»¶¨·¢ÉúÁ˱仯 | B£® | ËÙ¶È´óСһ¶¨·¢ÉúÁ˱仯 | ||
| C£® | ¿ÉÄÜÊܵ½ÁËÁ¦µÄ×÷Óà | D£® | Êܵ½µÄºÏÍâÁ¦Ò»¶¨²»Îª0 |
| A£® | ¢ÙÇøÓò | B£® | ¢ÚÇøÓò | C£® | ¢ÛÇøÓò | D£® | ¢ÜÇøÓò |
| A£® | Сº¢ËùÊܵÄÖØÁ¦ÓëСº¢ËùÊܵĵ¯Á¦´óСÏàµÈ | |
| B£® | Сº¢ËùÊܵÄÖØÁ¦ÓëСº¢ËùÊܵÄĦ²ÁÁ¦´óСÏàµÈ | |
| C£® | Сº¢ËùÊܵĵ¯Á¦ºÍĦ²ÁÁ¦µÄºÏÁ¦ÓëСº¢ËùÊܵÄÖØÁ¦´óСÏàµÈ | |
| D£® | ÒÔÉÏ˵·¨¶¼²»¶Ô |
| A£® | Ìì½ò¿ªÍùµÂÖݵÄ625´ÎÁгµÓÚ13£º35´ÓÌì½ò·¢³µ | |
| B£® | ijÈËÓÃ15sÅÜÍê100m | |
| C£® | ÖÐÑëµçÊǪ́ÐÂÎÅÁª²¥½ÚÄ¿19h¿ª²¥ | |
| D£® | 1997Äê7ÔÂ1ÈÕÁãʱÖйú¶ÔÏã¸Û»Ö¸´ÐÐʹÖ÷Ȩ |