ÌâÄ¿ÄÚÈÝ

2£®Ò»ÖÊÁ¿Îªm=2kgµÄС»¬¿é£¬´ÓÇã½ÇΪ37¡ãµÄ¹â»¬Ð±ÃæÉϵÄAµãÓɾ²Ö¹»¬Ï£¬Ð±ÃæÔÚB´¦Óëһˮƽ´«ËÍ´øÆ½»¬Á¬½Ó£¬´«ËÍ´ø×ó¶ËCÓëÒ»ÊúÖ±¹â»¬°ëÔ²»¡Æ½»¬Á¬½Ó£¬ÒÑÖªÐ±ÃæAB³¤0.75m£¬Ô²»¡¹ìµÀ°ë¾¶Îª0.15m£¬DΪԲ»¡ÉÏÓëÔ²Ðĵȸߵĵ㣬EΪԲ»¡¹ìµÀ×î¸ßµã£¬»¬¿éÓë´«ËÍ´ø¼äµÄ¶¯Ä¦²ÁÒòÊý¦Ì=0.3£¬ÖØÁ¦¼ÓËÙ¶ÈgÈ¡10m/s2£®
£¨1£©µ±´«ËÍ´ø¾²Ö¹Ê±£¬»¬¿éÇ¡ºÃÄÜ»¬µ½Dµã£¬ÇóB£¬CÁ½µã¼äµÄ¾àÀ룻
£¨2£©Èô´«ËÍ´øË³Ê±Õëת¶¯£¬´ÓAµãÒÔÒ»¶¨³õËÙ¶ÈÏ»¬µÄС»¬¿éÇ¡ºÃÄÜͨ¹ý×î¸ßµãE£¬ÇóС»¬¿éµÄ³õËÙ¶È´óС£»
£¨3£©Èô´«ËÍ´øÄæÊ±Õëת¶¯£¬´ÓAµãÓɾ²Ö¹ÊͷŵÄС»¬¿éÄÜͨ¹ý×î¸ßµãE£¬Çó´«ËÍ´øµÄ×îСËٶȼ°´Ë¹ý³ÌС»¬¿éBµ½CµÄʱ¼ä£®

·ÖÎö £¨1£©Õû¸ö¹ý³ÌÖÐÄÜÁ¿Êغ㣬Çó³ö³õʼºÍÄ©ÊÆÄܺó×÷²î£¬¼´ÎªÄ¦²ÁÁ¦ÔÚBCÉÏ×öµÄ¸º¹¦£¬¿ÉµÃBC¾àÀ룻
£¨2£©Èô´«ËÍ´øË³Ê±Õëת¶¯£¬Ä¦²ÁÁ¦Ê¼ÖÕˮƽÏòÓÒ£¬×ö¸º¹¦£¬¸ù¾ÝÄÜÁ¿Êغã¿ÉÇó³õ¶¯ÄÜ£¬½ø¶øÇó³ö³õËÙ¶È£»
£¨3£©Èô´«ËÍ´øÄæÊ±Õëת¶¯£¬ÇÒËٶȽÏСʱ£¬Ä¦²ÁÁ¦Ë®Æ½ÏòÓÒ£¬Ô˶¯¹ý³ÌÊÇÏȼõËÙ£¬¼õËÙµ½ºÍ´«ËÍ´øËÙ¶ÈÏàͬʱ£¬ÔÈËÙÔ˶¯£»
ÓÃÁÙ½ç·ÖÎö·¨£¬¼ÙÉèÎï¿é¸ÕºÃÄÜͨ¹ýEµã£¬Çó³öͨ¹ýCµãʱµÄËÙ¶È£¬¼´Îª´«ËÍ´øµÄ×îСËÙ¶È£»
Îï¿é´ÓBµ½CµÄ¹ý³Ì£¬·Ö¶Î·Ö±ðÇó³öÔȼõËÙÔ˶¯Ê±¼äºÍÔÈËÙʱ¼äÇóºÍ¼´µÃ´ð°¸£®

½â´ð ½â£º£¨1£©ÉèBC¼ä¾àÀëΪs£¬BC¼äÎï¿éËùÊÜĦ²ÁÁ¦´óСΪ£ºf=¦Ìmg=0.3¡Á2¡Á10=6N£»
µ±´«ËÍ´ø¾²Ö¹Ê±£¬Ä¦²ÁÁ¦×ö¸º¹¦£¬´óСΪ£ºWBC=fs
ÒÔBCÃæÎªÁãÊÆÄÜÃæ£¬Ôò³õÊ¼ÊÆÄÜΪ£ºEp0=mglABsin37¡ã=2¡Á10¡Á0.75¡Á0.6=9J
Ä©ÊÆÄÜ£ºEp1=mghD=2¡Á10¡Á0.15=3J
Õû¸ö¹ý³ÌÖÐÄÜÁ¿Êغ㣬Ôò£ºEp0=Ep1+WBC
´úÈëÊý¾Ý½âµÃ£ºs=1m£»
£¨2£©Éè³õËÙ¶ÈΪv£¬Ôò³õʼ¶¯ÄÜΪ£ºEK=$\frac{1}{2}m{v}^{2}$
³õÊ¼ÊÆÄÜÈÔΪEp0
BC¶ÎĦ²ÁÁ¦×ö¸º¹¦£¬´óСÈÔΪWBC
Ä©ÊÆÄÜΪ£ºEp2=mg2R=2¡Á10¡Á2¡Á0.15=6J
Õû¸ö¹ý³ÌÖÐÄÜÁ¿ÊغãµÃ£ºEK+Ep0=WBC+Ep2
´úÈëÊý¾ÝµÃ£¬Ð¡»¬¿éµÄ³õËÙ¶È£ºv=$\sqrt{3}$m/s£»
£¨3£©¼ÙÉè¸ÕºÃÄÜͨ¹ýEµã£¬Éèͨ¹ýCµãµÄËٶȼ´´«ËÍ´øµÄ×îСËÙ¶ÈΪv¡ä£¬
Ôò$\frac{1}{2}mv{¡ä}^{2}-\frac{1}{2}m{v}_{E}^{2}$=EP2
¶øm$\frac{{v}_{E}^{2}}{R}=mg$
´úÈëÊý¾ÝµÃ´«ËÍ´øµÄ×îСËÙ¶È£ºv¡ä=$\frac{3\sqrt{2}}{2}$m/s
ÓÉ´Ó¾²Ö¹ÊÍ·ÅÎï¿é£¬µÃͨ¹ýBµÄËÙ¶Èv¡åÂú×㣺$\frac{1}{2}mv{¡å}^{2}=mg{l}_{AB}•sin¦È$
´úÈëÊý¾Ý½âµÃ£ºv¡å=3m/s
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ£¬µÃÔȼõËÙ¹ý³Ì¼ÓËÙ¶ÈΪ£ºa=$\frac{f}{m}=\frac{6}{2}=3m/{s}^{2}$
ÓÉËÙ¶Èʱ¼ä¹«Ê½µÃ£¬ÔȼõËÙ¹ý³ÌÓÃʱ£º$t¡ä=\frac{v¡ä-v¡å}{-a}$=$\frac{3-\frac{3\sqrt{2}}{2}}{3}$==1-$\frac{\sqrt{2}}{2}$£¨s£©
Î»ÒÆÎª£º${s}_{1}=\frac{v{¡ä}^{2}-v{¡å}^{2}}{-2a}=0.5m$
ÓÉÎ»ÒÆÊ±¼ä¹«Ê½µÃ£¬ÔÈËÙ¹ý³ÌËùÓÃʱ¼ä£ºt¡å=$\frac{s-{s}_{1}}{v¡ä}=\frac{1-0.5}{\frac{3\sqrt{2}}{2}}$=$\frac{\sqrt{2}}{6}£¨s£©$
×ÜÓÃʱ£ºt1=t¡ä+t¡å£¬
´úÈëÊý¾ÝµÃ£ºt1=1$-\frac{\sqrt{2}}{2}$$+\frac{\sqrt{2}}{6}$=1$-\frac{\sqrt{2}}{3}$£¨s£©
´ð£º£¨1£©B£¬CÁ½µã¼äµÄ¾àÀëΪ1m£»
£¨2£©Ð¡»¬¿éµÄ³õËÙ¶È´óСΪ$\sqrt{3}$m/s£»
£¨3£©´«ËÍ´øµÄ×îСËÙ¶ÈΪ$\frac{3\sqrt{2}}{2}$m/s£¬´Ë¹ý³ÌС»¬¿éBµ½CµÄʱ¼äΪ£¨1-$-\frac{\sqrt{2}}{3}$£©s£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²ìĦ²ÁÁ¦µÄ·½ÏòºÍ×ö¹¦£¬ÓÃÈ«¹ý³ÌÄÜÁ¿Êغã¿ÉÒÔ¼ò»¯Ë¼Î¬¹ý³ÌºÍ¼ÆËã²½Ö裮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø