题目内容

7.某公共汽车的运行非常规则,先由静止开始匀加速启动,当速度达到v1=10m/s时再做匀速运动,匀速运动的时间t=55s,然后开始匀减速制动,在到达车站时刚好停住.公共汽车在每个车站停车时间均为△t=30s,然后以同样的方式运行至下一站.已知公共汽车在加速启动和减速制动时的加速度大小都为a=2m/s2,而所有相邻车站间的行程都相同.有一次当公共汽车刚刚抵达一个车站时,一辆电动车刚经过该车站一段时间t0=60s,已知该电动车速度大小恒为v2=6m/s,而且行进路线、方向与公共汽车完全相同,不考虑其他交通状况的影响.
(1)求两车站间的行程l.
(2)若从下一站开始计数(计为1),公共汽车在刚到达第n站时,电动车也恰好同时到达此车站,则n为多少?

分析 (1)根据速度时间公式求出汽车加速的时间,结合平均速度推论求出加速的位移,由于加速和减速的加速度大小相等,根据运动的对称性得出加速和减速的位移相等,根据位移公式求出匀速运动的位移,从而得出两站间的行程.
(2)根据两车的位移关系,结合运动学的时间关系,运用运动学公式求出n的值.

解答 解:(1)汽车加速时间为:
${t}_{1}=\frac{{v}_{1}}{a}$=$\frac{10}{2}s=5s$,
加速的位移为:
${x}_{1}=\frac{{v}_{1}}{2}{t}_{1}=\frac{10}{2}×5m=25m$,
减速的位移为:
x2=x1=25m,
匀速位移为:
x3=v1t=10×55m=550m.
则两车站间的行程为:l=x1+x2+x3=25+25+550m=600m.
(2)设电动车到第n站用时T,则有:T=n(2t1+t+△t)+t0
nx=v0T,
代入数据解得:n=12.
答:(1)两车站间的行程为600m.
(2)n为12.

点评 本题主要考查了运动学的基本公式的直接应用,第一问比较简单,理清汽车在整个过程中的运动规律即可求解,对于第二问,关键抓住位移关系和时间关系,运用运动学公式进行求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网