ÌâÄ¿ÄÚÈÝ
14£®ÓÃÈçͼ¼×ËùʾµÄʵÑé×°ÖÃÑéÖ¤»úеÄÜÊØºã¶¨ÂÉ£®ÊµÑéʱ½ÓͨµçÔ´£¬ÖÊÁ¿Îªm2µÄÖØÎï´Ó¸ß´¦Óɾ²Ö¹ÊÍ·Å£¬ÖÊÁ¿Îªm1µÄÖØÎïÍÏ×ÅÖ½´ø´ò³öһϵÁеĵ㣬ͼÒÒÊÇʵÑéÖдò³öµÄÒ»ÌõÖ½´ø£¬AÊÇ´òϵĵÚ1¸öµã£¬Á¿³ö¼ÆÊýµãE¡¢F¡¢Gµ½4µã¾àÀë·Ö±ðΪd1¡¢d2¡¢d3£¬Ã¿ÏàÁÚÁ½¼ÆÊýµãµÄ¼ÆÊ±¼ä¸ôΪT£¬µ±µØÖØÁ¦¼ÓËÙ¶ÈΪg£®£¨ÒÔÏÂËùÇóÎïÀíÁ¿¾ùÓÃÒÑÖª·ûºÅ±í´ï£©£¨1£©ÔÚ´òµãA¡«FµÄ¹ý³ÌÖУ¬ÏµÍ³¶¯ÄܵÄÔö¼ÓÁ¿¡÷Ek=$\frac{{£¨{m_1}+{m_2}£©{{£¨{d_3}-{d_1}£©}^2}}}{{8{T^2}}}$£¬ÏµÍ³ÖØÁ¦ÊÆÄܵļõÉÙÁ¿¡÷Ep=£¨m2-m1£©gd2£¬±È½Ï¡÷Ek¡¢¡÷Ep´óС¼´¿ÉÑéÖ¤»úеÄÜÊØºã¶¨ÂÉ£®
£¨2£©Ä³Í¬Ñ§¸ù¾ÝÖ½´øËã³ö¸÷¼ÆÊýµãËÙ¶È£¬²¢×÷³ö$\frac{{v}^{2}}{2}$-dͼÏóÈçͼ±ûËùʾ£¬ÈôͼÏßµÄбÂÊk=$\frac{{{m_2}-{m_1}}}{{{m_1}+{m_2}}}g$£¬¼´¿ÉÑéÖ¤»úеÄÜÊØºã¶¨ÂÉ£®
·ÖÎö ¸ù¾ÝÔÚÔȱäËÙÖ±ÏßÔ˶¯ÖÐʱ¼äÖеãµÄ˲ʱËÙ¶È´óСµÈÓڸùý³ÌÖÐµÄÆ½¾ùËÙ¶È£¬¿ÉÒÔÇó³ö´òϼÇÊýµãFʱµÄËÙ¶È´óС£»
¸ù¾ÝÎïÌåµÄ³õÄ©¶¯ÄÜ´óС¿ÉÒÔÇó³ö¶¯ÄܵÄÔö¼ÓÁ¿£¬¸ù¾ÝÎïÌåÖØÁ¦×ö¹¦ºÍÖØÁ¦ÊÆÄÜÖ®¼äµÄ¹ØÏµ¿ÉÒÔÇó³öÏµÍ³ÖØÁ¦ÊÆÄܵļõСÁ¿£®
½â´ð ½â£º£¨1£©ÓÉÓÚÿÏàÁÚÁ½¼ÆÊýµãµÄ¼ÆÊ±¼ä¸ôΪT£¬
¸ù¾Ýij¶Îʱ¼äÄ򵀮½¾ùËٶȵÈÓÚÖмäʱ¿ÌµÄ˲ʱËÙ¶ÈÇó³öµãFµÄ˲ʱËÙ¶È£ºvF=$\frac{{d}_{3}-{d}_{1}}{2T}$£®
ÔÚA¡«F¹ý³ÌÖÐϵͳ¶¯ÄܵÄÔöÁ¿¡÷EK=$\frac{1}{2}$£¨m1+m2£©vF2=$\frac{{£¨{m_1}+{m_2}£©{{£¨{d_3}-{d_1}£©}^2}}}{{8{T^2}}}$£®
ÏµÍ³ÖØÁ¦ÊÆÄܵļõСÁ¿Îª¡÷EP=£¨m2-m1£©gd2£®
£¨2£©±¾ÌâÖиù¾Ý»úеÄÜÊØºã¿ÉÖª£¬£¨m2-m1£©gd=$\frac{1}{2}$£¨m1+m2£©v2£¬
¼´ÓУº$\frac{1}{2}$v2=gd£¬ËùÒÔ$\frac{1}{2}$v2-dͼÏóÖÐͼÏóµÄбÂʱíÊ¾ÖØÁ¦¼ÓËÙ¶È£¬
ÄÇôбÂÊk=$\frac{{{m_2}-{m_1}}}{{{m_1}+{m_2}}}g$£¬
¹Ê´ð°¸Îª£º$\frac{{£¨{m_1}+{m_2}£©{{£¨{d_3}-{d_1}£©}^2}}}{{8{T^2}}}$£» £¨m2-m1£©gd2£»£¨2£©$\frac{{{m_2}-{m_1}}}{{{m_1}+{m_2}}}g$£®
µãÆÀ ±¾ÌâÑé֤ϵͳ»úеÄÜÊØºã£¬¹Ø¼üµÃ³öϵͳ¶¯ÄܵÄÔö¼ÓÁ¿ºÍÏµÍ³ÖØÁ¦ÊÆÄܵļõСÁ¿£¬ÒªÕÆÎÕÇó˲ʱËٶȵķ½·¨£®
| A£® | ÉñÖÛÊ®ºÅ×öÔÈËÙÔ˶¯ | B£® | ÉñÖÛÊ®ºÅµÄËٶȳ¬¹ý7.9km/s | ||
| C£® | ÉñÖÛÊ®ºÅÏà¶ÔµØÃæ¾²Ö¹ | D£® | ÉñÖÛÊ®ºÅ´¦ÓÚÊ§ÖØ»·¾³ÖÐ |
| A£® | ¹ìµÀ°ë¾¶Ô½´ó£¬ÖÜÆÚÔ½³¤ | |
| B£® | ÕŽÇÔ½´ó£¬ËÙ¶ÈÔ½´ó | |
| C£® | Èô²âµÃÖÜÆÚºÍÕŽǣ¬Ôò¿ÉµÃµ½ÐÇÇòµÄƽ¾ùÃÜ¶È | |
| D£® | Èô²âµÃÖÜÆÚºÍ¹ìµÀ°ë¾¶£¬Ôò¿ÉµÃµ½ÐÇÇòµÄƽ¾ùÃÜ¶È |
| A£® | СÇò¼ÓËÙ¶ÈÒ»Ö±Ôö´ó | B£® | СÇòËÙ¶ÈÒ»Ö±Ôö´ó£¬Ö±µ½×îºóÔÈËÙ | ||
| C£® | ¸Ë¶ÔСÇòµÄµ¯Á¦ÏȼõСºó·´ÏòÔö´ó | D£® | СÇòËùÊÜÂåÂ××ÈÁ¦Ò»Ö±Ôö´ó |
| A£® | BÎÀÐǵĹìµÀ°ë¾¶Îªr1£¨$\frac{{T}_{1}}{{T}_{2}}$£©${\;}^{\frac{2}{3}}$ | |
| B£® | AÎÀÐǵĻúеÄÜÒ»¶¨´óÓÚBÎÀÐǵĻúеÄÜ | |
| C£® | A¡¢BÎÀÐÇÔÚ¹ìµÀÉÏÔËÐÐʱ´¦ÓÚÍêÈ«Ê§ÖØ×´Ì¬£¬²»ÊÜÈκÎÁ¦µÄ×÷Óà | |
| D£® | ijʱ¿ÌÎÀÐÇA¡¢BÔÚ¹ìµÀÉÏÏà¾à×î½ü£¬´Ó¸Ãʱ¿ÌÆðÿ¾¹ý$\frac{{T}_{1}{T}_{2}}{{T}_{1}-{T}_{2}}$ʱ¼ä£¬ÎÀÐÇA¡¢BÔÙ´ÎÏà¾à×î½ü |
| A£® | £¨$\frac{GM{T}^{2}}{4{¦Ð}^{2}{R}^{3}}$-1£©F | B£® | £¨1-$\frac{4{¦Ð}^{2}{R}^{3}}{GM{T}^{2}}$£©F | C£® | £¨$\frac{4{¦Ð}^{2}{R}^{3}}{GM{T}^{2}}$-1£©F | D£® | £¨1-$\frac{GM{T}^{2}}{4{¦Ð}^{2}{R}^{3}}$£©F |
| A£® | ζÈÏàͬµÄÇâÆøºÍÑõÆø£¬ÇâÆø·Ö×ÓºÍÑõÆø·Ö×ӵį½¾ùËÙÂÊÏàͬ | |
| B£® | Ë®ÓÉÆøÌ¬µ½ÒºÌ¬£¬·Ö×ÓÁ¦¶ÔË®·Ö×Ó×öÕý¹¦ | |
| C£® | ÔÚÍêÈ«Ê§ÖØµÄÇé¿öÏ£¬ÃܱÕÈÝÆ÷Ä򵀮øÌå¶ÔÆ÷±Úѹǿ²»±ä | |
| D£® | ²»ÊÇÂú×ãÄÜÁ¿Êغ㶨ÂɵÄÎïÀí¹ý³Ì¶¼ÄÜ×Ô·¢½øÐÐ | |
| E£® | Ò»¸öÑõÆø·Ö×ÓµÄÌå»ýΪV0£¬±ê×¼×´¿öÏÂ1 molÑõÆøµÄÌå»ýΪV£¬Ôò°¢·ü¼ÓµÂÂÞ³£ÊýNA=$\frac{V}{{V}_{0}}$ |