ÌâÄ¿ÄÚÈÝ
1£®£¨1£©Ï¸ÏßÀ¶Ï˲¼ä»ØÂ·ÖеĵçÁ÷´óС¼°ab¸ËµÄËÙ¶Èv
£¨2£©Ïß¶Ï֮ǰˮƽÀÁ¦FËæÊ±¼ätµÄ±ä»¯¹æÂÉ£®
·ÖÎö £¨1£©¶Ôcd°ô·ÖÎöÖª£¬µ±cd°ôËùÊܵݲÅàÁ¦µÈÓÚ×î´ó¾²Ä¦²ÁÁ¦ºÍÉþ×ÓµÄ×î´óÀÁ¦Ö®ºÍʱ£¬Éþ×Ó¶ÏÁÑ£¬×¥×¡¹²µãÁ¦Æ½ºâÇó³öϸÏß±»À¶ÏʱµÄµçÁ÷£¬ÓÉÅ·Ä·¶¨Âɺͷ¨ÀµÚ¶¨ÂɽáºÏÇóab¸ËµÄËÙ¶È£®
£¨2£©¸ù¾ÝËÙ¶Èʱ¼ä¹«Ê½Çó³öËٶȵıí´ïʽ£¬´Ó¶ø¸ù¾ÝÇиî²úÉúµÄ¸ÐÓ¦µç¶¯Êƺͱպϵç·ŷķ¶¨ÂÉÇó³öµçÁ÷µÄ´óС£¬µÃ³ö°²ÅàÁ¦µÄ´óС£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öˮƽÀÁ¦FËæÊ±¼äµÄ±ä»¯¹æÂÉ£®
½â´ð ½â£º£¨1£©Ï¸ÏßÀ¶Ï˲¼äÂú×㣺BIL=f+T0
µÃ $I=\frac{{{T_0}+f}}{BL}$
ÓÖ BLv=2IR
µÃab¸ËµÄËÙ¶È $v=\frac{{2R£¨{T_0}+f£©}}{{{B^2}{L^2}}}$
£¨2£©ÔÚʱ¿Ìt£¬ab¸ËµÄËÙ¶È v=at
°ôÖиÐÓ¦µç¶¯ÊÆÎª E=BLv=BLat
°ôÖеĸÐÓ¦µçÁ÷Ϊ I=$\frac{BLat}{2R}$
ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉ F-BIL=ma
µÃ F=$\frac{{{B^2}{L^2}a}}{2R}t+ma$
´ð£º
£¨1£©Ï¸ÏßÀ¶Ï˲¼ä»ØÂ·ÖеĵçÁ÷´óСÊÇ$\frac{{T}_{0}+f}{BL}$£¬ab¸ËµÄËÙ¶ÈvÊÇ$\frac{2R£¨{T}_{0}+f£©}{{B}^{2}{L}^{2}}$£®
£¨2£©Ïß¶Ï֮ǰˮƽÀÁ¦FËæÊ±¼ätµÄ±ä»¯¹æÂÉΪF=$\frac{{{B^2}{L^2}a}}{2R}t+ma$£®
µãÆÀ ±¾Ì⿼²éÁ˵ç´Å¸ÐÓ¦ÓëÁ¦Ñ§µÄ×ۺϣ¬¹Ø¼üÒªÕÆÎÕÇиî²úÉúµÄ¸ÐÓ¦µç¶¯ÊÆ´óС¡¢°²ÅàÁ¦¹«Ê½¡¢±ÕºÏµç·ŷķ¶¨ÂɵÈ֪ʶ£¬²¢ÄÜÊìÁ·ÔËÓã®
| A£® | °ÂË¹ÌØÖ¸³ö±ä»¯µÄ´Å³¡¿ÉÒÔʹ±ÕºÏµç·ÖвúÉúµçÁ÷ | |
| B£® | Àã´Î´ÓÀíÂÛÉÏÔËÓÃÊýÑ§ÍÆµ¼µÄ·½·¨µÃ³öÁËÀã´Î¶¨ÂÉ | |
| C£® | Âó¿Ë˹ΤÈÏΪ±ä»¯µÄ´Å³¡ÄܲúÉúµç³¡ | |
| D£® | ²¼ÀÊͨ¹ýµç×ÓÏÔ΢¾µ¹Û²ì»¨·ÛÔÚË®ÖеÄÔ˶¯Ö®ºóµÃ³ö·Ö×Ó×öÎÞ¹æÔòÔ˶¯µÄ½áÂÛ |
| A£® | ´Óͼʾʱ¿Ì¿ªÊ¼£¬¾¹ý0.01 sÖʵãaͨ¹ýµÄ·³ÌΪ0.4 m | |
| B£® | ´Óͼʾʱ¿Ì¿ªÊ¼£¬Öʵãb±ÈÖʵãaÏȵ½Æ½ºâλÖà | |
| C£® | ƽºâλÖÃΪx=2µÄÖʵãÓëÆ½ºâλÖÃΪx=4µÄÖʵ㷴Ïà | |
| D£® | ͼʾʱ¿ÌÖʵãbµÄ¼ÓËÙ¶È·½ÏòÏòÏ |
| A£® | ÎïÌåBÊܵ½µÄĦ²ÁÁ¦¿ÉÄÜΪ0 | B£® | ÎïÌåBÊܵ½µÄĦ²ÁÁ¦Îªmgcos¦È | ||
| C£® | ÎïÌåB¶ÔµØÃæµÄѹÁ¦¿ÉÄÜΪ0 | D£® | ÎïÌåB¶ÔµØÃæµÄѹÁ¦ÎªMg-mgsin¦È |
| A£® | ÕâÁв¨µÄ²¨³¤ÊÇ10m | B£® | ÖʵãAµÄÕñ·ùΪÁã | ||
| C£® | ÖʵãCÔÙ¾¹ý0.15sͨ¹ýƽºâλÖà | D£® | ÖʵãB´Ë¿ÌÏòyÖḺ·½ÏòÔ˶¯ |
| A£® | ¦Ñ=kT | B£® | ¦Ñ=$\frac{k}{{T}^{2}}$ | C£® | ¦Ñ=kT 2 | D£® | ¦Ñ=$\frac{k}{T}$ |
| A£® | 200N•s | B£® | 150N•s | C£® | 100N•s | D£® | 250N•s |