题目内容

12.如图所示,质量m=3kg、可视为质点的小物块A沿斜面下滑,经O点以速度v0水平飞出,落在木板上瞬间,物块水平速度不变,竖方向速度消失.飞出点O距离地面度h=1.8m,质量M=3kg、长为L=3.6m的木板B静止在粗糙水平面上,木板高度忽略不计,其左端距飞出点正下方P点距离为s=1.2m.木板与物块间的动摩擦因数μ1=0.3,与水平面之间的动摩擦因数的μ2=0.1,重力加速度g取10m/s2.求:
(1)小物块水平飞出后经多长时间小物块落到长木板上;
(2)为了保证小物块能够落在木板上,初速度v0的范围;
(3)若小物块水平速度v0=4m/s,小物块停止运动时距P点距离是多少.

分析 (1)小物块水平飞出后做平抛运动,根据高度h求时间.
(2)为了保证小物块能够落在木板上,其水平位移应在这个范围:S≤x≤S+L,根据小物块水平方向匀速运动的规律求初速度v0的范围.
(3)若小物块水平速度v0=4m/s,由题求得水平速度大小.之后小物块向右做匀减速运动,木板向右做匀加速运动,根据牛顿第二定律和速度时间公式求出两者达到同速的时间和共同速度,之后两者一起做匀减速运动,由动能定理求出两者滑行的距离,从而得到小物块停止运动时距P点距离.

解答 解:(1)小物块水平飞出后做平抛运动,根据 h=$\frac{1}{2}g{t}^{2}$得:
t=$\sqrt{\frac{2h}{g}}$=$\sqrt{\frac{2×1.8}{10}}$s=0.6s
(2)为了保证小物块能够落在木板上,其水平位移应在这个范围:S≤x≤S+L,即有 1.2m≤x≤4.8m
根据x=v0t得:初速度v0的范围为 2m/s≤v0≤8m/s
(3)若小物块水平速度v0=4m/s,小物块落木板上时水平位移为 x=v0t=4×0.6m=2.4m
落点距木板右端的距离为 s′=s+L-x=1.2+3.6-2.4=2.4m
小物块落木板上瞬间,竖直分速度消失,物块水平速度不变,仍为v0=4m/s.
之后小物块向右做匀减速运动,木板向右做匀加速运动,设小物块和木板的加速度大小分别为a1和a2
根据牛顿第二定律得:
对小物块有:μ1mg=ma1
对木板有:μ1mg-μ2(M+m)g=Ma2
代入数据解之得:a1=3m/s2,a2=1m/s2
设经过时间t′两者速度相同,则有:
 v0-a1t′=a2t′
代入数据解得:t′=1s
共同速度为:v=a2t′=1×1=1m/s
在t′时间内小物块的位移为 x1=$\frac{{v}_{0}+v}{2}t′$=$\frac{4+1}{2}×1$=2.5m,木板的位移为 x2=$\frac{v}{2}t′$=$\frac{1}{2}×$1=0.5m
由于x1-x2=2m<s′,所以小物块没有滑出木板的右端,达到同速后两者一起匀减速运动,由动能定理得:
2(M+m)gx2=0-$\frac{1}{2}(M+m){v}^{2}$
代入数据解得:x3=0.5m
故小物块停止运动时距P点距离是 S=x+x1+x3=2.4+2.5+0.5=5.4m
答:(1)小物块水平飞出后经0.6s时间小物块落到长木板上;
(2)为了保证小物块能够落在木板上,初速度v0的范围是2m/s≤v0≤8m/s;
(3)若小物块水平速度v0=4m/s,小物块停止运动时距P点距离是5.4m.

点评 本题是复杂的力学综合题,关键要理清小物块与木板的运动情况,运用运动的分解法研究平抛运动.物块在木板上滑行时,要注意研究共速状态.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网