ÌâÄ¿ÄÚÈÝ
2£®Ä³Í¬Ñ§ÔÚ×ö¡°ÀûÓõ¥°Ú²âÖØÁ¦¼ÓËÙ¶È¡±µÄʵÑéÖУ¬ÏȲâµÃ°ÚÏß³¤Îª101.00cm£¬°ÚÇòÖ±¾¶Îª2.00cm£¬È»ºóÓÃÃë±í¼Ç¼Á˵¥°ÚÕñ¶¯50´ÎËùÓõÄʱ¼äΪ101.5S£®Ôò£º£¨1£©Ëû²âµÃµÄ°Ú³¤=102.00cm£®
£¨2£©Ëû²âµÃµÄgֵƫС£¬¿ÉÄÜÔÒòÊÇ£ºB
A£®²â°ÚÏß³¤Ê±°ÚÏßÀµÃ¹ý½ô£®
B£®°ÚÏßÉ϶ËδÀι̵ØÏµÓÚÐüµã£¬Õñ¶¯ÖгöÏÖËɶ¯£¬Ê¹°ÚÏß³¤¶ÈÔö¼ÓÁË£®
C£®¿ªÊ¼¼ÆÊ±Ê±£¬Ãë±í¹ý³Ù°´Ï£®
D£®ÊµÑéÖÐÎó½«49´ÎÈ«Õñ¶¯¼ÆÎª50´Î£®
£¨3£©ÎªÁËÌá¸ßʵÑ龫¶È£¬ÔÚʵÑéÖпɸı伸´Î°Ú³¤L²¢²â³öÏàÓ¦µÄÖÜÆÚT£¬´Ó¶øµÃ³öÒ»×é¶ÔÓ¦µÄLºÍTµÄÊýÖµ£¬ÔÙÒÔLΪºá×ø±ê¡¢T2Ϊ×Ý×ø±ê½«ËùµÃÊý¾ÝÁ¬³ÉÖ±Ïߣ¬²¢ÇóµÃ¸ÃÖ±ÏßµÄбÂÊK£¬ÔòÖØÁ¦¼ÓËÙ¶Èg=$\frac{{4{¦Ð^2}}}{K}$£®£¨ÓÃK±íʾ£©
£¨4£©Ò»Óα꿨³ßµÄÖ÷³ß×îС·Ö¶ÈΪ1ºÁÃ×£¬ÓαêÉÏÓÐ10¸öСµÈ·Ö¼ä¸ô£¬ÏÖÓô˿¨³ßÀ´²âÁ¿¹¤¼þµÄÖ±¾¶£¬ÈçͼËùʾ£®¸Ã¹¤¼þµÄÖ±¾¶Îª29.8mm£®
·ÖÎö ÀûÓõ¥°ÚµÄ°Ú³¤µÈÓÚ°ÚÏߵij¤¶ÈÓë°ÚÇòµÄ°ë¾¶Ö®ºÍ£»¸ù¾Ýµ¥°ÚµÄÖÜÆÚ¹«Ê½µÃ³öÖØÁ¦¼ÓËÙ¶ÈgµÄ±í´ïʽ£¬´Ó¶øÅжϳögÖµ¼°ÆäÆ«´óµÄÔÒò£¬Óɵ¥°ÚÖÜÆÚ±í´ïʽ¿ÉµÃT2ÓëLµÄ¹ØÏµÊ½£¬µÃµ½Ð±ÂÊkµÄ±í´ïʽ£¬½ø¶ø¿ÉÇóµÃgÖµ£»°ÚÇòÖ±¾¶ÓÉÓα꿨³ß¶Á³ö£¬¶ÁÊýµÄ·½·¨ÊÇÖ÷³ß¶ÁÊýÓëÓαê³ß¶ÁÊýÖ®ºÍ£¬²»ÐèÒª¹À¶Á£®
½â´ð ½â£º£¨1£©µ¥°ÚµÄ°Ú³¤L=l+$\frac{d}{2}$=101.00+1.00=102.00cm£¬
£¨2£©±¾ÊµÑé²âÁ¿gµÄÔÀíÊǵ¥°ÚµÄÖÜÆÚ¹«T=2¦Ð$\sqrt{\frac{l}{g}}$£¬
¸ù¾Ý´Ë¹«Ê½±äÐεà g=$\frac{4{¦Ð}^{2}l}{{T}^{2}}$
A¡¢²â°ÚÏßʱ°ÚÏßÀµÃ¹ý½ô£¬Ôò°Ú³¤µÄ²âÁ¿Á¿Æ«´ó£¬Ôò²âµÃµÄÖØÁ¦¼ÓËÙ¶ÈÆ«´ó£®¹ÊA´íÎó£®
B¡¢°ÚÏßÉ϶ËδÀι̵ØÏµÓÚÐüµã£¬Õñ¶¯ÖгöÏÖËɶ¯£¬Ê¹°ÚÏß³¤¶ÈÔö¼ÓÁË£¬Õñ¶¯ÖÜÆÚ±ä´ó£¬¶ø²âµÃµÄ°Ú³¤Æ«Ð¡£¬Ôò²âµÃÖØÁ¦¼ÓËÙ¶ÈÆ«Ð¡£®¹ÊBÕýÈ·£®
C¡¢¿ªÊ¼¼ÆÊ±£¬Ãë±í¹ý³Ù°´Ï£¬²âµÃµ¥°ÚµÄÖÜÆÚÆ«Ð¡£¬Ôò²âµÃµÄÖØÁ¦¼ÓËÙ¶ÈÆ«´ó£®¹ÊC´íÎó£®
D¡¢ÊµÑéÖÐÎó½«49.5´ÎÈ«Õñ¶¯ÊýΪ50´Î£®²âµÃÖÜÆÚÆ«Ð¡£¬Ôò²âµÃµÄÖØÁ¦¼ÓËÙ¶ÈÆ«´ó£®¹ÊD´íÎó£®
¹ÊÑ¡£ºB
£¨3£©¹ÊÒÔlΪºá×ø±ê¡¢T2Ϊ×Ý×ø±êµÃµ½µÄͼÏóµÄбÂÊΪ£ºk=$\frac{4{¦Ð}^{2}}{g}$½âµÃ£ºg=$\frac{4{¦Ð}^{2}}{k}$
£¨4£©°ÚÇòÖ±¾¶Îª 29+0.1¡Á8=29.8mm
¹Ê´ð°¸Îª£º£¨1£©102.00 £¨2£©B £¨3£©$\frac{{4{¦Ð^2}}}{K}$ £¨4£©29.8
µãÆÀ ¸ÃÌ⿼²éµ¥°Ú²âÖØÁ¦¼ÓËٶȵÄʵÑéµÄʵÑéÔÀí£¬ÆäÖаڳ¤Óëµ¥°ÚµÄÖÜÆÚµÄ¼ÆËãÒ²ÊǸÃʵÑéÖеÄÒ»¸ö×¢ÒâÊÂÏҪÔÚÕÆÎÕʵÑéÔÀíµÄ»ù´¡ÉÏ£¬ÕýÈ··ÖÎöÎó²î²úÉúµÄÔÒò
| A£® | h=10m£¬V0=5m/s | B£® | h=5m£¬V0=10m/s | C£® | h=20m£¬V0=2.5m/s | D£® | h=2.5m£¬V0=20m/ |
| A£® | ²¨³¤Îª40mµÄ²¨ | B£® | ²¨³¤Îª8mµÄ²¨ | ||
| C£® | ƵÂÊΪ40HzµÄÉù²¨ | D£® | ƵÂÊΪ5000MHzµÄµç´Å²¨ |
| A£® | $\frac{h{{v}_{1}}^{2}{{v}_{2}}^{2}}{G£¨{{v}_{1}}^{2}+{{v}_{2}}^{2}£©}$ | B£® | $\frac{h{v}_{1}{v}_{2}}{G£¨{v}_{1}-{v}_{2}£©}$ | ||
| C£® | $\frac{h{{v}_{1}}^{2}{{v}_{2}}^{2}}{G£¨{{v}_{1}}^{2}-{{v}_{2}}^{2}£©}$ | D£® | $\frac{h{v}_{1}{v}_{2}}{G£¨{v}_{1}+{v}_{2}£©}$ |
| A£® | ÔÚ0-t1ʱ¼äÄÚ£¬FNÔö´ó£¬Ff¼õС | B£® | ÔÚ0-t1ʱ¼äÄÚ£¬FN¼õС£¬FfÔö´ó | ||
| C£® | ÔÚt1-t2ʱ¼äÄÚ£¬FNÔö´ó£¬FfÔö´ó | D£® | ÔÚt1-t2ʱ¼äÄÚ£¬FN¼õС£¬Ff¼õС |