ÌâÄ¿ÄÚÈÝ
8£®£¨1£©ÀíÏëµçѹ±íµÄ¶ÁÊý
£¨2£©´ÓͼʾλÖÿªÊ¼£¬ÔÚÏßȦת¶¯90¡ãµÄ¹ý³ÌÖвúÉúµÄƽ¾ù¸ÐÓ¦µç¶¯ÊÆÎª¶àÉÙ£¿
£¨3£©´ÓͼʾλÖÿªÊ¼£¬ÔÚÏßȦת¶¯È¦90¡ãµÄ¹ý³ÌÖеÆÅÝÉϲúÉúµÄÈÈÁ¿ÊǶàÉÙ£¿
£¨4£©´ÓͼʾλÖÿªÊ¼£¬ÔÚÏßȦת¶¯È¦180¡ãµÄ¹ý³ÌÖУ¬Í¨¹ýµÆÅݵIJúÉúµÄµçºÉÁ¿ÊǶàÉÙ£¿
·ÖÎö £¨1£©ÓÉEm=$\frac{1}{2}$BL2¦Ø¼´¿ÉÇó½â×î´óÖµ£¬¸ù¾Ý×î´óÖµºÍÓÐЧֵ֮¼ä¹ØÏµ¼°µç·ÖзÖÑ¹ÌØµãÇó½âµçѹ±íʾÊý£»
£¨2£©¸ù¾Ý$\overline{E}=\frac{n¡÷∅}{¡÷t}$Çó½âƽ¾ùµç¶¯ÊÆ£»
£¨3£©ÀûÓÃÓÐЧֵºÍ½¹¶ú¶¨ÂÉÇó½âÈÈÁ¿£»
£¨4£©ÔÙ¸ù¾Ý$q=\frac{¡÷∅}{{R}_{×Ü}}$£¬¼´¿ÉÇó½â£®
½â´ð ½â£º£¨1£©²úÉúµÄ¸ÐÓ¦µç¶¯ÊƵÄ×î´óֵΪ£º
Em=$\frac{1}{2}$BL2¦Ø
ÓÐЧֵΪ£ºE=$\frac{{E}_{m}}{\sqrt{2}}=\frac{\sqrt{2}B{L}^{2}¦Ø}{4}$£¬
¸ù¾Ý·ÖÑ¹ÌØµãµÃµçѹ±í¶ÁÊýΪ£ºU=$\frac{3R}{3R+12R}E=\frac{\sqrt{2}B{L}^{2}¦Ø}{20}$£¬
£¨2£©¸ù¾Ý·¨ÀµÚµç´Å¸ÐÓ¦¶¨ÂɵôÓͼʾλÖÿªÊ¼£¬ÔÚÏßȦת¶¯90¡ãµÄ¹ý³ÌÖУ¬ÏßȦÖвúÉúµÄƽ¾ù¸ÐÓ¦µçÊÆÎª£º
$\overline{E}=\frac{n¡÷∅}{¡÷t}=\frac{\frac{B{L}^{2}}{2}}{\frac{T}{4}}=\frac{B{L}^{2}¦Ø}{¦Ð}$£»
£¨3£©¸ù¾Ý½¹¶ú¶¨ÂɵôÓͼʾλÖÿªÊ¼£¬ÔÚÏßȦת¶¯90¡ãµÄ¹ý³ÌÖУ¬µÆÅÝÉϲúÉúµÄÈÈÁ¿Îª£º
Q=$\frac{{U}^{2}}{3R}t$=$\frac{{B}^{2}{L}^{4}¦Ø}{1200R}$
£¨4£©´ÓͼʾλÖÿªÊ¼£¬ÔÚÏßȦת¶¯È¦180¡ãµÄ¹ý³ÌÖУ¬´©¹ýÏßȦµÄ´ÅͨÁ¿µÄ±ä»¯Á¿Îª£º
¡÷∅=BL2
ͨ¹ýµÆÅݵIJúÉúµÄµçºÉµçºÉÁ¿Îª£º
q¡ä=$\frac{q}{2}$=$\frac{1}{2}¡Á\frac{B{L}^{2}}{15R}$=$\frac{B{L}^{2}}{30R}$£»
´ð£º£¨1£©ÀíÏëµçѹ±íµÄ¶ÁÊýVΪ$\frac{\sqrt{2}B{L}^{2}¦Ø}{20}$£»
£¨2£©´ÓͼʾλÖÿªÊ¼£¬ÔÚÏßȦת¶¯90¡ãµÄ¹ý³ÌÖвúÉúµÄƽ¾ù¸ÐÓ¦µç¶¯ÊÆÎª$\frac{B{L}^{2}¦Ø}{¦Ð}$£»
£¨3£©´ÓͼʾλÖÿªÊ¼£¬ÔÚÏßȦת¶¯È¦90¡ãµÄ¹ý³ÌÖеÆÅÝÉϲúÉúµÄÈÈÁ¿ÊÇ$\frac{{B}^{2}{L}^{4}¦Ø}{1200R}$£»
£¨4£©´ÓͼʾλÖÿªÊ¼£¬ÔÚÏßȦת¶¯È¦180¡ãµÄ¹ý³ÌÖУ¬Í¨¹ýµÆÅݵIJúÉúµÄµçºÉÁ¿ÊÇ$\frac{B{L}^{2}}{30R}$£®
µãÆÀ ½â¾ö´ËÌâÐèÒªÖªµÀ½»Á÷µçµÄ·åÖµºÍÓÐЧֵ֮¼äµÄ¹ØÏµ£¬²¢ÇÒÖªµÀµç·µÄ´®²¢Áª¹ØÏµ£®»¹ÒªÌرð×¢ÒâÓÐÐ§Ãæ»ýÊÇÏßÈ¦Ãæ»ýµÄÒ»°ë£¬²¢ÕÆÎÕÇó½âµçÁ¿µÄ×ۺϱí´ïʽ
| A£® | ÔÚPµãÒÔÂÔ´óÓÚv0µÄËٶȽ«Ð¡ÇòˮƽÅ׳ö | |
| B£® | ÔÚPµãÒÔÂÔСÓÚv0µÄËٶȽ«Ð¡ÇòˮƽÅ׳ö | |
| C£® | ÔÚPµãÕýÏ·½Ä³Î»Öý«Ð¡ÇòÒÔv0µÄËÙ¶ÈˮƽÅ׳ö | |
| D£® | ÔÚPµã×ó²àÓëPµãµÈ¸ßµÄijλÖý«Ð¡ÇòÒÔv0µÄËÙ¶ÈˮƽÅ׳ö |
| A£® | µ¥Î»Ìå»ýÄڵķÖ×ÓÊý±äÉÙ£¬µ¥Î»Ê±¼äÄÚ¶Ôµ¥Î»Ãæ»ýÆ÷±ÚÅöײµÄ´ÎÊý¼õÉÙ | |
| B£® | ÆøÌå·Ö×ÓµÄÃܼ¯³Ì¶È±äС£¬·Ö×Ó¶ÔÆ÷±ÚµÄÎüÒýÁ¦±äС | |
| C£® | ÿ¸ö·Ö×Ó¶ÔÆ÷±ÚµÄƽ¾ùײ»÷Á¦¶¼±äС | |
| D£® | ÆøÌå·Ö×ÓµÄÃܼ¯³Ì¶È±äС£¬·Ö×ÓµÄÔ˶¯±äÂý |
| A£® | Ù¤ÀûÂÔÓá°ÀíÏëÐ±ÃæÊµÑé¡±ÍÆ·ÁËÑÇÀïÊ¿¶àµÂµÄ¡°Á¦ÊÇά³ÖÎïÌåÔ˶¯µÄÔÒò¡±µÄ¹Ûµã | |
| B£® | ´ÓÅ£¶ÙµÚÒ»¶¨ÂÉ¿ÉÑÝÒï³ö¡°ÖÊÁ¿ÊÇÎïÌå¹ßÐÔ´óСµÄÁ¿¶È¡±µÄ½áÂÛ | |
| C£® | ¿âÂØ×îÔçÒýÈëµç³¡¸ÅÄî²¢Ìá³öÓõ糡Ïß±íʾµç³¡ | |
| D£® | T•m2ÓëV•s²»Äܱíʾͬһ¸öÎïÀíÁ¿µÄµ¥Î» |
| A£® | ¦ÁÁ£×ÓÏÈÊܵ½Ô×Ӻ˵ijâÁ¦×÷Ó㬺óÊÜÔ×Ӻ˵ÄÒýÁ¦µÄ×÷Óà | |
| B£® | ¦ÁÁ£×ÓÒ»Ö±Êܵ½Ô×Ӻ˵ijâÁ¦×÷Óà | |
| C£® | ¦ÁÁ£×ÓÏÈÊܵ½Ô×Ӻ˵ÄÒýÁ¦×÷Ó㬺óÊܵ½Ô×Ӻ˵ijâÁ¦×÷Óà | |
| D£® | ¦ÁÁ£×ÓÒ»Ö±Êܵ½¿âÂØ³âÁ¦£¬ËÙ¶ÈÒ»Ö±¼õС |
| A£® | СÇòÔÚBµãÖ»ÊÜ1¸öÁ¦µÄ×÷Óà | |
| B£® | СÇòÔÚAB¹ìµÀÉÏÔ˶¯µÄ¹ý³ÌÖУ¬ËùÊܵÄÏòÐÄÁ¦¶ÔСÇò×ö¸º¹¦ | |
| C£® | AC¾àÀëΪ2R | |
| D£® | ¹ìµÀÉϵÄ×îµÍµãAÊܵ½Ð¡ÇòµÄѹÁ¦Îª5mg |
A¡¢220v½»Á÷µçÔ´ B¡¢µÍѹ½»Á÷µçÔ´
C¡¢ÌìÆ½ D¡¢ºÁÃ׿̶ȳß
£¨2£©ÔÚ½ÓͨµçÔ´¡¢ÊÍ·ÅÖ½´øÇ°£¬Ä³Í¬Ñ§¿ªÊ¼ÊµÑéµÄÇéÐÎÈçͼËùʾ£¬ÒÑÖªÌú¼Ų̈·ÅÔÚˮƽ×ÀÃæÉÏ£¬´òµã¼ÆÊ±Æ÷ÊúÖ±·ÅÖã¬ÇëÖ¸³öͼÖеIJ»ºÏÀíÖ®´¦£¨ÖÁÉÙÁ½µã£©
¢ÙÖØ´¸Î´½ô¿¿´òµã¼ÆÊ±Æ÷
¢ÚÊÍ·ÅʱÊÖÓ¦¸Ãץסֽ´øµÄÉ϶˲¢Ê¹Ö½´øÊúÖ±
£¨3£©¸ÃͬѧÔÚ¸ÄÕý´íÎóÖ®ºó£¬µÃµ½Ò»Ìõµã¼£ÇåÎúµÄÖ½´ø£¬ÈçͼËùʾ£¬ÀûÓÃÖ½´øÉϵÄÊý¾ÝÍê³É±í¸ñ£¬À´ÑéÖ¤»úеÄÜÊØºã¶¨ÂÉ£¨ÒÑÖªµ±µØµÄÖØÁ¦¼ÓËÙ¶ÈΪ9.8m/s2£¬´òµã¼ÆÊ±Æ÷µÄ¹¤×÷ƵÂÊΪ50Hz£¬ÒÑÓÃÌìÆ½³ÆÁ¿µÃµ½ÖØ´¸µÄÖÊÁ¿Îª0.3kg£©
| O | A | B | C | D | E | |
| x/cm | 0.00 | 2.55 | 5.31 | 8.55 | 12.10 | 16.11 |
| v/m•s-1 | - | 1.33 | 1.49 | 1.70 | 1.89 | - |
| Ek/J | - | 0.264 | 0.333 | 0.432 | 0.536 | - |
| Ep/J | - | -0.075 | -0.157 | -0.251 | -0.356 | - |
| E/J | - | 0.189 | 0.176 | 0.181 | 0.180 | - |
A¡¢Ò»Ìõ¹ýÔµãµÄÖ±Ïߣ¬Ð±ÂʵÈÓÚ1
B¡¢Ò»Ìõ¹ýÔµãµÄÖ±Ïߣ¬Ð±ÂÊÂÔСÓÚ1
C¡¢Ò»Ìõ²»¹ýÔµãµÄÖ±Ïߣ¬Ð±ÂʵÈÓÚ1
D¡¢Ò»Ìõ²»¹ýÔµãµÄÖ±Ïߣ¬Ð±ÂÊÂÔСÓÚ1£®