ÌâÄ¿ÄÚÈÝ

4£®ÔÚ2008Äê±±¾©°ÂÔË»áÖйù¾§¾§»ñµÃÅ®×Ó¸öÈË3Ã×°åÌøË®¹Ú¾ü£¬ÆäÌø  Ë®µÄ¹ý³Ì¿É¼ò»¯Îª£ºÔ˶¯Ô±½«Ìø°åÏòÏÂѹµ½×îµÍµãC£¬ÈôÌø°å·´µ¯ºóÔÚBµã½«Ô˶¯Ô±ÏòÉÏÅ׳ö£¬µ½×î¸ßµãAºó×ö×ÔÓÉÂäÌåÔ˶¯£¬ÊúÖ±ÂäÈëË®ÖУ®Èç¹û½«Ô˶¯Ô±ÊÓΪÖʵ㣬ÇÒÒÑÖªÔ˶¯Ô±µÄÖÊÁ¿Îªm£¬ÖØÁ¦¼ÓËÙ¶ÈΪg£¬AB¼ä¡¢BC¼äºÍBÓëË®Ãæ¼äµÄÊúÖ±¾àÀë·Ö±ðΪh1¡¢h2¡¢h3£¬ÈçͼËùʾ£¬Ô˶¯Ô±´ÓCµ½BµÄ¹ý³Ì¿ÉÊÓΪÔȼÓËÙÔ˶¯¹ý³Ì£¬ÊÔÇó£º
£¨1£©Ô˶¯Ô±À뿪BµãºóÔÚ¿ÕÖÐÔ˶¯µÄʱ¼äºÍÔ˶¯µÄÔ±ÈëˮʱµÄËÙ¶È´óС£»
£¨2£©´ÓCµ½BµÄ¹ý³ÌÖÐÌø°å¶ÔÈËµÄÆ½¾ù×÷ÓÃÁ¦£®

·ÖÎö £¨1£©ÓÉÔȱäËÙÔ˶¯¹æÂÉÇó³öÔ˶¯Ê±¼ä£¬ÓÉ»úеÄÜÊØºã¶¨ÂÉÇó³öËÙ¶È£®
£¨2£©ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö¼ÓËÙ¶È£¬È»ºóÓÉÔ˶¯Ñ§¹«Ê½Çó³öƽ¾ù×÷ÓÃÁ¦£®

½â´ð ½â£º£¨1£©´ÓBµãÉÏÉýµ½AµãµÄʱ¼äΪt1£¬
${h_1}=\frac{1}{2}gt_1^2$£¬${t_1}=\sqrt{\frac{{2{h_1}}}{g}}$£¬
´Ó×î¸ßµãAµ½Ë®ÃæµÄʱ¼äΪt2£¬
ÓÉ${h_1}+{h_3}=\frac{1}{2}gt_2^2$£¬½âµÃ£º${t_2}=\sqrt{\frac{{2£¨{h_1}+{h_3}£©}}{g}}$£®
À뿪BµãºóÔÚ¿ÕÖÐÔ˶¯µÄʱ¼äΪ£º$t=\sqrt{\frac{{2{h_1}}}{g}}+\sqrt{\frac{{2£¨{h_1}+{h_3}£©}}{g}}$
ÏÂÂäµ½Ë®Ãæ£¬»úеÄÜÊØºã£¬ÓУº$mg£¨{h_1}+{h_3}£©=\frac{1}{2}m{v^2}$£®
½âµÃ£¬ÈëË®ËÙ¶È´óСΪ£º$v=\sqrt{2g£¨{h_1}+{h_3}£©}$£»
£¨2£©´ÓCµ½B¶ÔÔ˶¯Ô±ÓУº$\bar F-mg=ma$£¬
$v_B^2=2g{h_1}$£¬$v_B^2=2a{h_2}$£¬
½âµÃ£º$\overline{F}=mg£¨1+\frac{h_1}{h_2}£©$£»
´ð£º£¨1£©Ô˶¯Ô±À뿪BµãºóÔÚ¿ÕÖÐÔ˶¯µÄʱ¼ä$\sqrt{\frac{2{h}_{1}}{g}}$+$\sqrt{\frac{2£¨{h}_{1}+{h}_{3}£©}{g}}$£¬Ô˶¯µÄÔ±ÈëˮʱµÄËÙ¶È´óСΪ$\sqrt{2g£¨{h}_{1}+{h}_{3}£©}$£»
£¨2£©´ÓCµ½BµÄ¹ý³ÌÖÐÌø°å¶ÔÈËµÄÆ½¾ù×÷ÓÃÁ¦Îªmg£¨1+$\frac{{h}_{1}}{{h}_{2}}$£©£®

µãÆÀ ½â´ð±¾ÌâµÄ¹Ø¼üÖªµÀÔ˶¯Ô±ÆðÌø¹ý³ÌÔ˶¯Ô±ºÍÌø°åϵͳ»úеÄÜÊØºã£¬ÌøÆðºóÔ˶¯Ô±Ô˶¯¹ý³Ì»úеÄÜÒ²ÊØºã£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø