ÌâÄ¿ÄÚÈÝ
4£®£¨1£©Ô˶¯Ô±À뿪BµãºóÔÚ¿ÕÖÐÔ˶¯µÄʱ¼äºÍÔ˶¯µÄÔ±ÈëˮʱµÄËÙ¶È´óС£»
£¨2£©´ÓCµ½BµÄ¹ý³ÌÖÐÌø°å¶ÔÈËµÄÆ½¾ù×÷ÓÃÁ¦£®
·ÖÎö £¨1£©ÓÉÔȱäËÙÔ˶¯¹æÂÉÇó³öÔ˶¯Ê±¼ä£¬ÓÉ»úеÄÜÊØºã¶¨ÂÉÇó³öËÙ¶È£®
£¨2£©ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö¼ÓËÙ¶È£¬È»ºóÓÉÔ˶¯Ñ§¹«Ê½Çó³öƽ¾ù×÷ÓÃÁ¦£®
½â´ð ½â£º£¨1£©´ÓBµãÉÏÉýµ½AµãµÄʱ¼äΪt1£¬
${h_1}=\frac{1}{2}gt_1^2$£¬${t_1}=\sqrt{\frac{{2{h_1}}}{g}}$£¬
´Ó×î¸ßµãAµ½Ë®ÃæµÄʱ¼äΪt2£¬
ÓÉ${h_1}+{h_3}=\frac{1}{2}gt_2^2$£¬½âµÃ£º${t_2}=\sqrt{\frac{{2£¨{h_1}+{h_3}£©}}{g}}$£®
À뿪BµãºóÔÚ¿ÕÖÐÔ˶¯µÄʱ¼äΪ£º$t=\sqrt{\frac{{2{h_1}}}{g}}+\sqrt{\frac{{2£¨{h_1}+{h_3}£©}}{g}}$
ÏÂÂäµ½Ë®Ãæ£¬»úеÄÜÊØºã£¬ÓУº$mg£¨{h_1}+{h_3}£©=\frac{1}{2}m{v^2}$£®
½âµÃ£¬ÈëË®ËÙ¶È´óСΪ£º$v=\sqrt{2g£¨{h_1}+{h_3}£©}$£»
£¨2£©´ÓCµ½B¶ÔÔ˶¯Ô±ÓУº$\bar F-mg=ma$£¬
$v_B^2=2g{h_1}$£¬$v_B^2=2a{h_2}$£¬
½âµÃ£º$\overline{F}=mg£¨1+\frac{h_1}{h_2}£©$£»
´ð£º£¨1£©Ô˶¯Ô±À뿪BµãºóÔÚ¿ÕÖÐÔ˶¯µÄʱ¼ä$\sqrt{\frac{2{h}_{1}}{g}}$+$\sqrt{\frac{2£¨{h}_{1}+{h}_{3}£©}{g}}$£¬Ô˶¯µÄÔ±ÈëˮʱµÄËÙ¶È´óСΪ$\sqrt{2g£¨{h}_{1}+{h}_{3}£©}$£»
£¨2£©´ÓCµ½BµÄ¹ý³ÌÖÐÌø°å¶ÔÈËµÄÆ½¾ù×÷ÓÃÁ¦Îªmg£¨1+$\frac{{h}_{1}}{{h}_{2}}$£©£®
µãÆÀ ½â´ð±¾ÌâµÄ¹Ø¼üÖªµÀÔ˶¯Ô±ÆðÌø¹ý³ÌÔ˶¯Ô±ºÍÌø°åϵͳ»úеÄÜÊØºã£¬ÌøÆðºóÔ˶¯Ô±Ô˶¯¹ý³Ì»úеÄÜÒ²ÊØºã£®
| A£® | ÎïÌåËùÊܵÄÍâÁ¦µÄ·½Ïò²»±äʱ£¬ÎïÌåÒ»¶¨×öÖ±ÏßÔ˶¯ | |
| B£® | ÎïÌåËùÊܵÄÍâÁ¦´óС²»±äʱ£¬ÎïÌåÒ»¶¨×öÖ±ÏßÔ˶¯ | |
| C£® | ÎïÌåËùÊܵÄÍâÁ¦´óСºÍ·½Ïò¶¼²»±äʱ£¬ÎïÌåÒ»¶¨×öÖ±ÏßÔ˶¯ | |
| D£® | ÒÔÉÏ˵·¨¶¼²»ÕýÈ· |
| A£® | ÈôÖªµÀ·É´¬µÄÔ˶¯¹ìµÀ°ë¾¶ºÍÖÜÆÚ£¬ÓÖÒÑÖªÍòÓÐÒýÁ¦³£Á¿£¬¾Í¿ÉÒÔËã³ö·É´¬ÖÊÁ¿ | |
| B£® | Èô·É´¬Ö´ÐÐÍêÈÎÎñ·µ»ØµØÇò£¬ÔÚ½øÈë´óÆø²ã֮ǰµÄ¹ý³ÌÖУ¬·É´¬µÄ¶¯ÄÜÖð½¥Ôö´ó£¬ÊÆÄÜÖð½¥¼õС£¬»úеÄܱ£³Ö²»±ä | |
| C£® | ÈôÓԱ´Ó´¬²ÕÖÐÂýÂý¡°×ß¡±³ö²¢À뿪·É´¬£¬·É´¬ÒòÖÊÁ¿¼õС£¬ËùÊÜÍòÓÐÒýÁ¦¼õС£¬Ôò·É´¬ËÙÂʼõС | |
| D£® | ÈôÓÐÁ½¸öÕâÑùµÄ·É´¬ÔÚͬһ¹ìµÀÉÏ£¬Ïà¸ôÒ»¶Î¾àÀëһǰһºóÑØÍ¬Ò»·½ÏòÈÆÐУ¬Ö»ÒªºóÒ»·É´¬ÏòºóÅç³öÆøÌ壬ÔòÁ½·É´¬Ò»¶¨ÄÜʵÏÖ¶Ô½Ó |
| A£® | ÒÒͼ¶ÁÊýΪF0-G£¬±ûͼ¶ÁÊýΪF0 | B£® | ÒÒͼ¶ÁÊýΪF0+G£¬±ûͼ¶ÁÊýΪF0-G | ||
| C£® | ÒÒͼ¶ÁÊýΪF0£¬±ûͼ¶ÁÊýΪF0-G | D£® | ÒÒͼ¶ÁÊýΪF0-G£¬±ûͼ¶ÁÊýΪF0+G |
| A£® | Á£×ÓÔÚÈýµãµÄµçÊÆÄÜ´óСΪEpc£¾Epa£¾Epb | |
| B£® | Á£×ÓÔ˶¯¾¶¼£Ò»¶¨ÊÇa¡úb¡úc | |
| C£® | Á£×ÓÔÚÈýµãµÄ¶¯ÄÜ´óСΪEkb£¾Eka£¾Ekc | |
| D£® | Á£×ÓÒ»¶¨´ø¸ºµçºÉ£¬ÇÒÁ£×ÓÔÚa¡¢b¡¢cÈýµãËùÊܺÏÁ¦Ïàͬ |