ÌâÄ¿ÄÚÈÝ
19£®| A£® | £¨$\sqrt{2}$+1£©k$\frac{Q}{{a}^{2}}$ | B£® | $\sqrt{2}$k$\frac{Q}{{a}^{2}}$ | C£® | k$\frac{Q}{2{a}^{2}}$ | D£® | £¨$\sqrt{2}$-$\frac{1}{2}$£©k$\frac{Q}{{a}^{2}}$ |
·ÖÎö ¸ù¾ÝµãµçºÉµç³¡Ç¿¶È¹«Ê½E=$\frac{kQ}{{r}^{2}}$£¬½áºÏʸÁ¿µÄºÏ³É·¨Ôò£¬¼°¼¸ºÎµÄ³¤¶È¹ØÏµ£¬¼´¿ÉÇó½â£®
½â´ð ½â£ºÒÀ¾ÝµãµçºÉµç³¡Ç¿¶È¹«Ê½E=$\frac{kQ}{{r}^{2}}$£¬qA¡¢qC¸ºµãµçºÉ·Ö±ðÔÚD´¦µÄµç³¡Ç¿¶È´óСΪE0=$\frac{kQ}{{a}^{2}}$£¬
¸ù¾ÝʸÁ¿µÄºÏ³É·¨Ôò£¬Ôò¸ºµãµçºÉqA¡¢qCÔÚD´¦µÄºÏµç³¡Ç¿¶È´óСΪE1=$\sqrt{2}$$\frac{kQ}{{a}^{2}}$£¬·½ÏòÖ¸ÏòB´¦£¬
ͬÀí£¬B´¦µÄÕýµãµçºÉqBÔÚD´¦µÄµç³¡Ç¿¶È´óСE2=$\frac{kQ}{£¨\sqrt{2}a£©^{2}}$=$\frac{kQ}{2{a}^{2}}$£¬·½Ïò±³ÀëB´¦£¬
Òò´ËÔòD´¦µÄµç³¡Ç¿¶ÈµÄ´óСΪE=E1-E2=£¨$\sqrt{2}$-$\frac{1}{2}$£©k$\frac{Q}{{a}^{2}}$£¬¹ÊDÕýÈ·£¬ABC´íÎó£»
¹ÊÑ¡£ºD£®
µãÆÀ ¿¼²éµãµçºÉµç³¡Ç¿¶È¹«Ê½µÄÓ¦Óã¬ÕÆÎÕʸÁ¿µÄºÏ³É·¨Ôò£¬×¢Ò⼸ºÎ¹ØÏµµÄÔËËãÕýÈ·ÐÔ£¬¼°µç³¡Ç¿¶ÈµÄ·½ÏòÐÔ
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
14£®
ÈçͼËùʾ£¬½«Ò»¸ö¸Ä×°µÄµçÁ÷±í½ÓÈëµç·ºÍ±ê×¼±í½øÐÐУ׼£¬·¢ÏÖ´ý²â±íµÄʾÊý±È±ê×¼±íµÄʾÊýÆ«´óһЩ£¬Èç¹û±íÍ·
±¾ÉíÊÇ׼ȷµÄ£¬Ôò³öÏÖµÄÎó²î¿ÉÄÜÊÇÏÂÊöÄÇÖÖÔÒòÒýÆðµÄ£¨¡¡¡¡£©
| A£® | ±íÍ· | |
| B£® | ±íÍ· | |
| C£® | Ëù²¢ÁªµÄµç×è×èÖµR²¢±È¹«Ê½R²¢=$\frac{{I}_{g}{R}_{g}}{I-{I}_{g}}$¼ÆËã³öR²¢¡äµÄƫС | |
| D£® | Ëù²¢ÁªµÄµç×è×èÖµR²¢±È¹«Ê½R²¢=$\frac{{I}_{g}{R}_{g}}{I-{I}_{g}}$¼ÆËã³öR²¢¡äµÄÆ«´ó |
4£®Èç¹û°ÑÑõÆø·Ö×Ó¿´³ÉÇòÐΣ¬ÔòÑõÆø·Ö×ÓÖ±¾¶µÄÊýÁ¿¼¶Îª£¨¡¡¡¡£©
| A£® | 10-8cm | B£® | 10-10cm | C£® | 10-10mm | D£® | 10-15m |
8£®Ð´³öÏÂÁбí¸ñÖи÷ÎïÀíÁ¿ÔÚ¹ú¼Êµ¥Î»ÖÆÖеĵ¥Î»£º
| ÎïÀíÁ¿ | ËÙ¶È | ¼ÓËÙ¶È | Á¦ | Á¦¾Ø | ¶¯Á¿ |
| µ¥Î» |