(满分14分)是首项的等比数列,且,,成等差数列,(1)求数列的通项公式;(2)若,设为数列的前项和,若≤对一切恒成立,求实数的最小值.
(12分)已知{}是公差不为零的等差数列,,且,,成等比数列.(Ⅰ)求数列{}的通项; (Ⅱ)求数列{}的前n项和.
(本小题满分14分)已知:数列{}的前n项和为,满足=(Ⅰ)证明数列{}是等比数列.并求数列{}的通项公式=?(Ⅱ)若数列{}满足=log2(),而为数列的前n项和,求=?
(本小题满分12分)已知数列{an}的前三项与数列{bn}的前三项对应相等,且a1+2a2+22a3+…+2n-1an=8n对任意的n∈N*都成立,数列{bn+1-bn}是等差数列.(1)求数列{an}与{bn}的通项公式;(2)是否存在k∈N*,使得bk-ak∈(0,1)?请说明理由.
已知正数数列的前项和与通项满足,求.
已知数列的前项和和通项满足(是常数且)。(Ⅰ)求数列的通项公式;(Ⅱ) 当时,试证明;(Ⅲ)设函数,,是否存在正整数,使对都成立?若存在,求出的值;若不存在,请说明理由.
(本题满分12分)已知各项均为正数的数列{an}满足2a2n+1+3an+1an-2a2n=0(n)且a3+是a2,a4的等差中项,数列{bn}的前n项和Sn=n2(1)求数列{an}与{bn}的通项公式;(2)若Tn=,求证:Tn<(3)若cn=-,T/n=c1+c2+…+cn,求使T/n+n2n+1>125成立的正整数n的最小值
(本题满分12分)设数列{an}满足a1=1,an=(1)求a2、a3、a4、a5;(2)归纳猜想数列的通项公式an,并用数学归纳法证明;(3)设bn={anan+1},求数列{bn}的前n项和Sn。
(12分)已知数列中,是它的前项和,并且,.(Ⅰ)设,求证是等比数列(Ⅱ)设,求证是等差数列;(Ⅲ)求数列的通项公式.
(12分)等差数列的各项均为正数,,前项和为,为等比数列, ,且 .(Ⅰ)求与;(Ⅱ)求数列的前项和。