(本小题满分16分)
已知二次函数g(x)对任意实数x都满足,且.令
.
(1)求 g(x)的表达式;
(2)若使成立,求实数m的取值范围;
(3)设,,
证明:对,恒有
(本小题满分14分)
已知函数.
(Ⅰ) 若函数在上为单调增函数,求的取值范围;
(Ⅱ) 设,,且,求证:.
(本小题满分13分)
将这个数随机排成一列,得到的一列数称为的一个排列.
定义为排列的波动强度.
(Ⅰ)当时,写出排列的所有可能情况及所对应的波动强度;
(Ⅱ)当时,求的最大值,并指出所对应的一个排列;
(Ⅲ)当时,在一个排列中交换相邻两数的位置称为一次调整,若要求每次调整时波动强度不增加,问对任意排列,是否一定可以经过有限次调整使其波动强度降为9;若可以,给出调整方案,若不可以,请给出反例并加以说明.
(本题满分12分)
已知函数,当恒成立的a的最小值为k,存在n个
正数,且,任取n个自变量的值
(I)求k的值;
(II)如果
(III)如果,且存在n个自变量的值,使,求证:
(本小题满分14分)
已知函数的图象在点(为自然对数的底数)处的切线斜率为3.
(1)求实数的值;
(2)若,且对任意恒成立,求的最大值;
(3)当时,证明.
(本小题满分12分)
已知函数,若存在实数则称是函数的一个不动点.
(I)证明:函数有两个不动点;
(II)已知a、b是的两个不动点,且.当时,比较
的大小;
(III)在数列中,,等式对任何正整数n都成立,求数列的通项公式.
(本题满分18分)
对于定义域为D的函数,如果存在区间,同时满足:
①在内是单调函数;
②当定义域是时,的值域也是.
则称是该函数的“和谐区间”.
(1)求证:函数不存在“和谐区间”.
(2)已知:函数()有“和谐区间”,当变化时,求出的最大值.
(3)易知,函数是以任一区间为它的“和谐区间”.试再举一例有“和谐区间”的函数,并写出它的一个“和谐区间”.(不需证明,但不能用本题已讨论过的及形如的函数为例)
已知函数,当时,取得极小值.
(1)求,的值;
(2)设直线,曲线.若直线与曲线同时满足下列两个条件:
①直线与曲线相切且至少有两个切点;
②对任意都有.则称直线为曲线的“上夹线”.
试证明:直线是曲线的“上夹线”.
(3)记,设是方程的实数根,若对于定义域中任意的、,当,且时,问是否存在一个最小的正整数,使得恒成立,若存在请求出的值;若不存在请说明理由.
(本题满分16分)
已知,函数.
(1) 如果实数满足,函数是否具有奇偶性?如果有,求出相应的
值,如果没有,说明为什么?
(2) 如果判断函数的单调性;
(3) 如果,,且,求函数的对称轴或对称中心.