设函数fn(x)=n2x2(1-x)n(n为正整数),则fn(x)在[0,1]上的最大值为( )
A. 0 B.1 C. D.
=_________.
20个不加区别的小球放入编号为1、2、3的三个盒子中,要求每个盒内的球数不小于它的编号数,求不同的放法种数.
已知, ⑴求的值;⑵求的值.
设△ABC和△DBC所在的两个平面互相垂直,且AB=BC=BD,∠ABC=∠DBC=,求:
(1)直线AD与平面BCD所成角的大小;
(2)异面直线AD与BC所成的角;
(3)二面角A—BD—C的大小.
若抛物线上总存在关于直线对称的两点,求的范围.
已知a是实数,函数,如果函数在区间上有零点,求a的取值范围
已知双曲线=1(m>0,n>0)的顶点为A1、A2,与y轴平行的直线l交双曲线于点P、Q.
(1)求直线A1P与A2Q交点M的轨迹方程;
(2)当m≠n时,求所得圆锥曲线的焦点坐标、准线方程和离心率.
在海岛A上有一座海拔1千米的山,山顶设有一个观察站P,上午11时,测得一轮船在岛北30°东,俯角为30°的B处,到11时10分又测得该船在岛北60°西、俯角为60°的C处。
(1)求船的航行速度是每小时多少千米;
(2)又经过一段时间后,船到达海岛的正西方向的D处,问此时船距岛A有多远?
设f(x)是定义在R上的偶函数,其图像关于直线x=1对称,对任意x1、x2∈[0,],都有f(x1+x2)=f(x1)·f(x2),且f(1)=a>0.
(1)求f()、f();
(2)证明f(x)是周期函数;
(3)记an=f(2n+),求