若,则函数有( )
A. 最小值 B. 最大值 C. 最大值 D. 最小值
()(本小题满分13分)
设数列满足为实数
(Ⅰ)证明:对任意成立的充分必要条件是;
(Ⅱ)设,证明:;
(Ⅲ)设,证明:
(本小题满分12分)
20090327
(1)求p的值;
(2)过该抛物线的焦点作两条互相垂直的直线l1,l2,与抛物线相交得两条弦,两条弦
的中点分别为G,H.求|GH|的最小值.
如图,在ΔABC中,D、E为边AB的两个三等分点,=3a,=2b,求,.
若(i为虚数单位),则使的值可能是
A.0 B. C. D.
某社区举办北京奥运知识宣传活动,现场的“抽卡有奖游戏”特别引人注目,游戏规则是:盒子中装有8张形状大小相同的精美卡片,卡片上分别印有“奥运福娃”或“奥运会徽”,要求4人中一组参加游戏,参加游戏的4人从盒子中轮流抽取卡片,一次抽2张,抽取后不放回,直到4人中一人一次抽到2张“奥运福娃” 卡才能得到奖并终止游戏。
(1)游戏开始之前,一位高中生问:盒子中有几张“奥运会徽” 卡?主持人说:若从盒中任抽2张卡片不都是“奥运会徽” 卡的概率为,请你回答有几张“奥运会徽” 卡呢?
(2)现有甲、乙、丙、丁4人参加游戏,约定甲、乙、丙、丁依次抽取。用表示4人中的某人获奖终止游戏时总共抽取卡片的次数,求的数学期望。
交5元钱,可以参加一次抽奖。一袋中有同样大小的球10个,其中有8个标有1元,
2个标有5元,摸奖者只能从中任取2个球,他所得奖励是所抽2球标的钱数之和。
(I)求的概率分布列; (II)求抽奖人获利的数学期望。
在一个口袋中装有30个球,其中有10个红球,其余为白球,这些球除颜色外完全相同.游戏者一次从中摸出5个球.摸到4个红球就中一等奖,那么获一等奖的概率是多少?
某校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作. 规定:至少正确完成其中2题的便可提高通过. 已知6道备选题中考生甲有4题能正确完成,2题不能完成;考生乙每题正确完成的概率都是,且每题正确完成与否互不影响.分别写出甲、乙两考生正确完成题数的概率分布列;