(12分)已知AB是椭圆的一条弦,M(2,1)是AB的中点,以M为焦点且以椭圆E1的右准线为相应准线的双曲线E2与直线AB交于点. (1)设双曲线E2的离心率为,求关于的函数表达式; (2)当椭圆E1与双曲线E2的离心率互为倒数时,求椭圆E1的方程.
已知非零复数z1,z2满足|z1|=a,|z2|=b,|z1+z2|=c(a、b、c均大于零),问是否根据上述条件求出?请说明理由.
一条路上共有9个路灯,为了节约用电,拟关闭其中3个,要求两端的路灯不能关闭,任意两个相邻的路灯不能同时关闭,那么关闭路灯的方法总数为 .
如图,在边长为4的正方形ABCD的边上有动点P,从B点开始,沿折线BCDA向A点运动,设点P移动的路程为x,ABP面积为S.(1)求函数S=f(x)的解析式、定义域和值域;(2)求f[f(3)]的值。
已知集合A,B=,且,求实数的值组成的集合。
设全集,那么C( )
(A) (B) 4 (C) (D)
椭圆的焦点在轴上,长轴长是短轴长的两倍,则的值为( )
A. B. C.2 D.4
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点 已知函数f(x)=ax2+(b+1)x+(b–1)(a≠0)
(1)若a=1,b=–2时,求f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;
(3)在(2)的条件下,若y=f(x)图像上A、B两点的横坐标是函数f(x)的不动点,且A、B关于直线y=kx+对称,求b的最小值.
若f′(x0)=2, =_________.
甲、乙两人各进行一次射击,如果两人击中目标的概率都是0.6,计算:
(1)两人都击中目标的概率;
(2)其中恰有一人击中目标的概率;
(3)至少有一人击中目标的概率.