已知复数z满足:(1).
(1)求复数z(2)求满足的最大正整数n.
(本小题满分13分)
甲、乙两人进行五局三胜制的游戏(即先胜三局者获胜),若甲每局胜率为乙每局胜率为,设每局比赛之间相互没有影响。
(1)恰好第五局甲胜的概率;
(2)记ξ为本次游戏的局数,求ξ的概率分布列和数学期望。
如图,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连接AD交⊙O于点E,连接BE与AC交于点F.
⑴判断BE是否平分∠ABC,并说明理由;
⑵若AE=6,BE=8,求EF的长.
(本小题满分12分)袋中有分别写着“团团”和“圆圆”的两种玩具共7个,且形状完全相同,从中任取2个玩具都是“圆圆”的概率为,A、B两人不放回从袋中轮流摸取一个玩具,A先取,B后取,然后A再取,……直到两人中有一人取到“圆圆”时即停止游戏,每个玩具在每一次被取出的机会是均等的,用表示游戏终止时取玩具的次数。 (1)求袋中“圆圆”的个数; (2)求3的概率。
已知则等于 ( )
A. B. C. D.
(Ⅱ)求二面角D—A1A—C的平面角的余弦值; (Ⅲ)在直线CC1上是否存在点P,使BP//平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.
已知直线则其倾斜角为( )
当,不等式成立,则实数的取值范围是_______________.
设函数f(x)=a·b,其中向量a=(2cosx,1),b=(cosx, sin2x),x∈R.
(Ⅰ)若f(x)=1-且x∈[-,],求x;
(Ⅱ)若函数y=2sin2x的图象按向量c=(m,n)(|m|<)平移后得到函数y=f(x)的图象,求实数m、n的值。
方程的解是 。