在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形,则第n个三角形数为( )

| A、n | ||
B、
| ||
| C、n2-1 | ||
D、
|
用数学归纳法证明1+
+
+…+
<n(n∈N+,n>1)时,第一步应验证不等式( )
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n-1 |
A、1+
| ||||||
B、1+
| ||||||
C、1+
| ||||||
D、1+
|
| A、n | ||
B、
| ||
| C、n2-1 | ||
D、
|
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n-1 |
A、1+
| ||||||
B、1+
| ||||||
C、1+
| ||||||
D、1+
|