【题目】已知某地区某种昆虫产卵数和温度有关.现收集了一只该品种昆虫的产卵数(个)和温度()的7组观测数据,其散点图如所示:
根据散点图,结合函数知识,可以发现产卵数和温度可用方程来拟合,令,结合样本数据可知与温度可用线性回归方程来拟合.根据收集到的数据,计算得到如下值:
27 | 74 | 182 |
表中,.
(1)求和温度的回归方程(回归系数结果精确到);
(2)求产卵数关于温度的回归方程;若该地区一段时间内的气温在之间(包括与),估计该品种一只昆虫的产卵数的范围.(参考数据:,,,,.)
附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为.
【题目】随着通识教育理念的推广及高校课程改革的深入,选修课越来越受到人们的重视.国内一些知名院校在公共选修课的设置方面做了许多有益的探索,并且取得了一定的成果.因为选修课的课程建设处于探索阶段,选修课的教学、管理还存在很多的问题,所以需要在通识教育的基础上制定科学的、可行的解决方案,为学校选修课程的改革与创新、课程设置、考试考核、人才培养提供参考.某高校采用分层抽样法抽取了数学专业的50名参加选修课与不参加选修课的学生的成绩,统计数据如下表:
成绩优秀 | 成绩不够优秀 | 总计 | |
参加选修课 | 16 | 9 | 25 |
不参加选修课 | 8 | 17 | 25 |
总计 | 24 | 26 | 50 |
(1)试运用独立性检验的思想方法你能否有99%的把握认为“学生的成绩优秀与是否参加选修课有关”,并说明理由;
(2)如果从数学专业随机抽取5名学生,求抽到参加选修课的学生人数的分布列和数学期望(将频率当做概率计算).
参考公式:,其中.
临界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |