【题目】A地的天气预报显示,A地在今后的三天中,每一天有强浓雾的概率为,现用随机模拟的方法估计这三天中至少有两天有强浓雾的概率,先利用计算器产生之间整数值的随机数,并用0,1,2,3,4,5,6表示没有强浓雾,用7,8,9表示有强浓雾,再以每3个随机数作为一组,代表三天的天气情况,产生了如下20组随机数:
402 978 191 925 273 842 812 479 569 683
231 357 394 027 506 588 730 113 537 779
则这三天中至少有两天有强浓雾的概率近似为
A. B. C. D.
【题目】下列说法中正确的是( )
A.若事件与事件是互斥事件,则
B.若事件与事件是对立事件:则
C.某人打靶时连续射击三次,则事件“至少两次中靶”与事件“至多有一次中靶”是对立事件
D.把红橙黄3张纸牌随机分给甲乙丙3人,每人分得1张,则事件“甲分得的不是红牌”与事件“乙分得的不是红牌”是互斥事件
【题目】设函数f (x)=lnx-x+1.
(1)求f (x)的极值;
(2)若0<a<1,证明:函数g (x)=(x-a)ex-ax2+a(a-1) x(x>lna)有极小值点x0,且g (x0)<0.
【题目】如图,在△ABC中,∠ACB=,AC=3, BC=2,P是△ABC内的一点.
(1)若△BPC是以BC为斜边的等腰直角三角形,求PA长;
(2)若∠BPC=,求△PBC面积的最大值.
【题目】(1)已知a,b,N都是正数,a≠1,b≠1,证明对数换底公式:logaN=;
(2)写出对数换底公式的一个性质(不用证明),并举例应用这个性质.
【题目】销售某种活虾,根据以往的销售情况,按日需量x(公斤)属于[0,100),[100,200),[200,300),[300,400),[400,500] 进行分组,得到如图所示的频率分布直方图.这种活虾经销商进价成本为每公斤15元,当天进货当天以每公斤20元进行销售,当天未售出的须全部以每公斤10元卖给冷冻库.某水产品经销商某天购进了300公斤这种活虾,设当天利润为Y元.
(1)求Y关于x的函数关系式;
(2)结合直方图估计利润Y不小于300元的概率;
(3)在直方图的日需量分组中,以各组的区间中点值代表该组的各个值,日需量落入该区间的频率作为日需量取该区间中点值的概率,求Y的平均估计值.
【题目】已知角α的顶点与原点重合,始边与x轴的正半轴重合,终边过点P(-2,-1).
(1)求cos(2α+)的值;
(2)若角β满足tanβ=2,求tan(2α+β)的值.
【题目】在某次投篮测试中,有两种投篮方案:方案甲:先在A点投篮一次,以后都在B点投篮;方案乙:始终在B点投篮.每次投篮之间相互独立.某选手在A点命中的概率为,命中一次记3分,没有命中得0分;在B点命中的概率为,命中一次记2分,没有命中得0分,用随机变量表示该选手一次投篮测试的累计得分,如果的值不低于3分,则认为其通过测试并停止投篮,否则继续投篮,但一次测试最多投篮3次.
(1)若该选手选择方案甲,求测试结束后所得分的分布列和数学期望.
(2)试问该选手选择哪种方案通过测试的可能性较大?请说明理由.
【题目】已知函数.
(1)若在区间,上同时存在函数的极值点和零点,求实数的取值范围.
(2)如果对任意、,有,求实数的取值范围.