【题目】已知函数
.
(
)当
时,求此函数对应的曲线在
处的切线方程.
(
)求函数
的单调区间.
(
)对
,不等式
恒成立,求
的取值范围.
【答案】(
)
;(
)见解析;(
)当
时,
,当
时![]()
【解析】试题分析:(1)利用导数的意义,求得切线方程为
;(2)求导得
,通过
,
,
分类讨论,得到单调区间;(3)分离参数法,得到
,通过求导,得
,
.
试题解析:
(
)当
时,
,
∴
,
,
,∴切线方程
.
(
)![]()
![]()
.
令
,则
或
,
当
时,
在
,
上为增函数.
在
上为减函数,
当
时,
在
上为增函数,
当
时,
在
,
上为单调递增,
在
上单调递减.
(
)当
时,
,
当
时,由
得
,对
恒成立.
设
,则
,
令
得
或
,
|
|
|
|
|
|
|
|
|
| 极小 |
|
,∴
,
.
点睛:本题考查导数在函数综合题型中的应用。含参的函数单调性讨论,考查学生的分类讨论能力,本题中,结合导函数的形式,分类讨论;含参的恒成立问题,一般采取分离参数法,解决恒成立。
【题型】解答题
【结束】
20
【题目】已知集合
,集合
且满足:
,
,
与
恰有一个成立.对于
定义
.
(
)若
,
,
,
,求
的值及
的最大值.
(
)取
,
,
,
中任意删去两个数,即剩下的
个数的和为
,求证:
.
(
)对于满足
的每一个集合
,集合
中是否都存在三个不同的元素
,
,
,使得
恒成立,并说明理由.
【题目】某研究所计划利用“神舟十号”宇宙飞船进行新产品搭载实验,计划搭载新产品甲,乙,要根据该产品的研制成本、产品重量、搭载实验费用和预计产生收益来决定具体安排,通过调查,有关数据如表:
产品甲(件) | 产品乙(件) | ||
研制成本与搭载费用之和(万元/件) | 200 | 300 | 计划最大资金额3000元 |
产品重量(千克/件) | 10 | 5 | 最大搭载重量110千克 |
预计收益(万元/件) | 160 | 120 |
试问:如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?