题目内容
【题目】在如图所示的几何体中,四边形
是等腰梯形,
,
,
平面
,
,
.
![]()
(
)求证:
平面
.
(
)求二面角
的余弦值.
(
)在线段
(含端点)上,是否存在一点
,使得
平面
,若存在,求出
的值;若不存在,请说明理由.
【答案】(
)见解析;(
)
;(
)存在, ![]()
【解析】试题分析:(1)由题意,证明
,
,证明
面
;(2)建立空间直角坐标系,求平面
和平面
的法向量,解得余弦值为
;(3)得
,
,所以
,
,所以存在
为
中点.
试题解析:
(
)∵
,
,∴
.
∵
,∴
,∴
,
.
∵
,且
,
、
面
,∴
面
.
(
)知
,∴
.
∵
面
,
,
,
两两垂直,以
为坐标原点,
以
,
,
为
,
,
轴建系.
设
,则
,
,
,
,
,
∴
,
.
设
的一个法向量为
,
∴
,取
,则
.
由于
是面
的法向量,
则
.
∵二面角
为锐二面角,∴余弦值为
.
(
)存在点
.
设
,
,
∴
,
,
,
∴
,
.
∵
面
,
.
若
面
,∴
,
∴
,
∴
,∴
,∴存在
为
中点.
![]()
【题型】解答题
【结束】
19
【题目】已知函数
.
(
)当
时,求此函数对应的曲线在
处的切线方程.
(
)求函数
的单调区间.
(
)对
,不等式
恒成立,求
的取值范围.
【答案】(
)
;(
)见解析;(
)当
时,
,当
时![]()
【解析】试题分析:(1)利用导数的意义,求得切线方程为
;(2)求导得
,通过
,
,
分类讨论,得到单调区间;(3)分离参数法,得到
,通过求导,得
,
.
试题解析:
(
)当
时,
,
∴
,
,
,∴切线方程
.
(
)![]()
![]()
.
令
,则
或
,
当
时,
在
,
上为增函数.
在
上为减函数,
当
时,
在
上为增函数,
当
时,
在
,
上为单调递增,
在
上单调递减.
(
)当
时,
,
当
时,由
得
,对
恒成立.
设
,则
,
令
得
或
,
|
|
|
|
|
|
|
|
|
| 极小 |
|
,∴
,
.
练习册系列答案
相关题目