【题目】已知锐角三角形ABC中,角A,B,C所对的边分别为a,b,c若c﹣a=2acosB,则 的取值范围是 .
【题目】某厂生产某种产品x件的总成本c(x)=120+,总成本的单位是元.
(1)当x从200变到220时,总成本c关于产量x的平均变化率是多少?它代表什么实际意义?
(2)求c′(200),并解释它代表什么实际意义.
【题目】已知函数f(x)=x2+m与函数 的图象上至少存在一对关于x轴对称的点,则实数m的取值范围是( )A.B. ??C.D.[2﹣ln2,2]
【题目】设抛物线x2=4y的焦点为F,过点F作斜率为k(k>0)的直线l与抛物线相交于A、B两点,且点P恰为AB的中点,过点P作x轴的垂线与抛物线交于点M,若|MF|=4,则直线l的方程为( )A.B.y= x+1C.D.
【题目】某河流在一段时间x min内流过的水量为y m3,y是x的函数,y=f(x)=.
(1)当x从1变到8时,y关于x的平均变化率是多少?它代表什么实际意义?
(2)求f′(27)并解释它的实际意义.
【题目】把函数 的图象上每个点的横坐标扩大到原来的4倍,再向左平移 ,得到函数g(x)的图象,则函数g(x)的一个单调递减区间为( )A.B. ??C.D.
【题目】泰兴机械厂生产一种木材旋切机械,已知生产总利润c元与生产量x台之间的关系式为c(x)=-2x2+7 000x+600.
(1)求产量为1 000台的总利润与平均利润;
(2)求产量由1 000台提高到1 500台时,总利润的平均改变量;
(3)求c′(1 000)与c′(1 500),并说明它们的实际意义.
【题目】试比较正弦函数y=sin x在x=0和x=附近的平均变化率哪一个大?
【题目】设双曲线C:-y2=1(a>0)与直线l:x+y=1相交于两个不同的点A,B.
(1)求双曲线C的离心率e的取值范围;
(2)设直线l与y轴的交点为P,且,求a的值.
【题目】在考试测评中,常用难度曲线图来检测题目的质量,一般来说,全卷得分高的学生,在某道题目上的答对率也应较高,如果是某次数学测试压轴题的第1、2问得分难度曲线图,第1、2问满分均为6分,图中横坐标为分数段,纵坐标为该分数段的全体考生在第1、2问的平均难度,则下列说法正确的是( ) A.此题没有考生得12分B.此题第1问比第2问更能区分学生数学成绩的好与坏C.分数在[40,50)的考生此大题的平均得分大约为4.8分D.全体考生第1问的得分标准差小于第2问的得分标准差