【题目】菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水x(单位:千克)清洗该蔬菜1千克后,蔬菜上残留的农药y(单位:微克)的数据作了初步处理,得到下面的散点图及一些统计量的值.
y(微克)
x(千克)
|
|
|
|
|
|
|
3 | 38 | 11 | 10 | 374 | -121 | -751 |
其中![]()
(I)根据散点图判断,
与
,哪一个适宜作为蔬菜农药残量
与用水量
的回归方程类型(给出判断即可,不必说明理由);
(Ⅱ)若用解析式![]()
与用水量
的回归方程,求出
与
的回归方程.(c,d精确到0.1)
(Ⅲ)对于某种残留在蔬菜上的农药,当它的残留量低于20微克时对人体无害,为了放心食用该蔬菜,请估计需要用多少千克的清水清洗一千克蔬菜?(精确到0.1,参考数据
)
附:参考公式:回归方程
中斜率和截距的最小二乘估计公式分别为:
![]()
【题目】第一次大考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优
秀,统计成绩后,得到如下
列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为
.
(I)请完成列联表
优秀 | 非优秀 | 合计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 110 |
(Ⅱ)根据列联表的数据能否在犯错误的概率不超过0.01的前提下认为成绩与班级有关系?
参考公式和临界值表
,其中
.
| 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |