【题目】北京时间3月15日下午,谷歌围棋人工智能
与韩国棋手李世石进行最后一轮较量,
获得本场比赛胜利,最终人机大战总比分定格1:4.人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.
(Ⅰ)根据已知条件完成列联表,并据此资料你是否有
的把握认为“围棋迷”与性别有关?
![]()
非围棋迷 | 围棋迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名淡定生中的“围棋迷”人数为X。若每次抽取的结果是相互独立的,求X的分布列,期望 E(X) 和方差 D(X) .
【题目】2018年8月31日下午,关于修改个人所得税法的决定经十三届全国人大常委会第五次会议表决通过。2018年10月1日起施行最新起征点和税率。个税起征点提高至每月5000元.设个人月应纳税所得额为
元,个人月工资收入为
元,三险金(养老保险、失业保险、医疗保险、住房公积金)及其它各类免税额总计为
元,则
.设月应纳税额为
,个税的计算方式一般是分级计算求总和 (如图表所示,共分7级).比如:小陈的应纳税所得额为
元,月应交纳税额为
元.
税级 | 月应纳税所得额 | 税率 |
1 |
| 3% |
2 |
| 10% |
3 |
| 20% |
4 |
| 25% |
5 |
| 30% |
6 |
| 35% |
7 |
| 45% |
(1)小王的应纳税所得额
元,求
;
(2)小张的应纳税所得额
元,若
元,求
;
(3)当
时,写出
的解析式(请写成分段函数的形式).
【题目】第31届夏季奥林匹克运动会于2016年8月5日至8月21日在巴西里约热内卢举行.如表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据(单位:枚).
第30届伦敦 | 第29届北京 | 第28届雅典 | 第27届悉尼 | 第26届亚特兰大 | |
中国 | 38 | 51 | 32 | 28 | 16 |
俄罗斯 | 24 | 23 | 27 | 32 | 26 |
(1)根据表格中两组数据在答题卡上完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);
(2)如表是近五届奥运会中国代表团获得的金牌数之和
(从第26届算起,不包括之前已获得的金牌数)随时间
变化的数据:
时间 | 26 | 27 | 28 | 29 | 30 |
金牌数之和 | 16 | 44 | 76 | 127 | 165 |
作出散点图如图:
![]()
由图可以看出,金牌数之和
与时间
之间存在线性相关关系,请求出
关于
的线性回归方程,并预测到第32届奥运会时中国代表团获得的金牌数之和为多少?