【题目】某校为调查高中生选修课的选修倾向与性别关系,随机抽取50名学生,得到如表的数据表:
倾向“平面几何选讲” | 倾向“坐标系与参数方程” | 倾向“不等式选讲” | 合计 | |
男生 | 16 | 4 | 6 | 26 |
女生 | 4 | 8 | 12 | 24 |
合计 | 20 | 12 | 18 | 50 |
(1)根据表中提供的数据,选择可直观判断“选课倾向与性别有关系”的两种,作为选课倾向的变量的取值,并分析哪两种选择倾向与性别有关系的把握大;
附:K2=
.
P(k2≤k0) | 0.100 | 0.050 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(2)在抽取的50名学生中,按照分层抽样的方法,从倾向“平面几何选讲”与倾向“坐标系与参数方程”的学生中抽取8人进行问卷.若从这8人中任选3人,记倾向“平面几何选讲”的人数减去与倾向“坐标系与参数方程”的人数的差为ξ,求ξ的分布列及数学期望.
【题目】某城市理论预测2010年到2014年人口总数与年份的关系如下表所示
年份2010+x(年) | 0 | 1 | 2 | 3 | 4 |
人口数y(十万) | 5 | 7 | 8 | 11 | 19 |
(1)请根据上表提供的数据,求出y关于x的线性回归方程;
(2) 据此估计2015年该城市人口总数。
【题目】电视传媒公司为了解世界杯期间某地区电视观众对《战斗吧足球》节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该节目时间的频率分布直方图:
![]()
(注:频率分布直方图中纵轴
表示
,例如,收看时间在
分钟的频率是
)
将日均收看该足球节目时间不低于40分钟的观众称为“足球迷”.
(1)根据已知条件完成下面的
列联表,并据此资料判断是否可以认为“足球迷”与性别有关?如果有关,有多大把握?
非足球迷 | 足球迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“足球迷”人数为
.若每次抽取的结果是相互独立的,求
的分布列、均值
和方差
.
附:
,
|
|
|
|
|
|
|
|
|
|