【题目】对某种书籍每册的成本费(元)与印刷册数(千册)的数据作了初步处理,得到下面的散点图及一些统计量的值.
4.83 | 4.22 | 0.3775 | 60.17 | 0.60 | -39.38 | 4.8 |
其中,.
为了预测印刷千册时每册的成本费,建立了两个回归模型:,.
(1)根据散点图,你认为选择哪个模型预测更可靠?(只选出模型即可)
(2)根据所给数据和(1)中的模型选择,求关于的回归方程,并预测印刷千册时每册的成本费.
附:对于一组数据,,…,,其回归方程的斜率和截距的最小二乘估计公式分别为:,.
【题目】在某次测试中,卷面满分为分,考生得分为整数,规定分及以上为及格.某调研课题小组为了调查午休对考生复习效果的影响,对午休和不午休的考生进行了测试成绩的统计,数据如下表:
分数段 | |||||||
午休考生人数 | 29 | 34 | 37 | 29 | 23 | 18 | 10 |
不午休考生人数 | 20 | 52 | 68 | 30 | 15 | 12 | 3 |
(1)根据上述表格完成下列列联表:
及格人数 | 不及格人数 | 合计 | |
午休 | |||
不午休 | |||
合计 |
(2)判断“能否在犯错误的概率不超过的前提下认为成绩及格与午休有关”?
0.10 | 0.05 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
(参考公式:,其中)
【题目】随着互联网的迅速发展,越来越多的消费者开始选择网络购物这种消费方式某营销部门统计了2019年某月锦州的十大特产的网络销售情况得到网民对不同特产的最满意度和对应的销售额(万元)数据,如下表:
特产种类 | 甲 | 乙 | 丙 | 丁 | 戊 | 已 | 庚 | 辛 | 壬 | 癸 |
最满意度 | ||||||||||
销售额(万元) |
求销量额关于最满意度的相关系数;
我们约定:销量额关于最满意度的相关系数的绝对值在以上(含)是线性相关性较强;否则,线性相关性较弱.如果没有达到较强线性相关,则采取“末位淘汰”制(即销售额最少的特产退出销售),并求在剔除“末位淘汰”的特产后的销量额关于最满意度的线性回归方程(系数精确到).
参考数据:,,,.
附:对于一组数据.其回归直线方程的斜率和截距的最小二乘法估计公式分别为:,.线性相关系数
【题目】某大学餐饮中心为了了解新生的饮食习惯,在某学院大一年级名学生中进行了抽样调查,发现喜欢甜品的占.这名学生中南方学生共人。南方学生中有人不喜欢甜品.
(1)完成下列列联表:
喜欢甜品 | 不喜欢甜品 | 合计 | |
南方学生 | |||
北方学生 | |||
合计 |
(2)根据表中数据,问是否有的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(3)已知在被调查的南方学生中有名数学系的学生,其中名不喜欢甜品;有名物理系的学生,其中名不喜欢甜品.现从这两个系的学生中,各随机抽取人,记抽出的人中不喜欢甜品的人数为,求的分布列和数学期望.
附:.
0.15 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |