【题目】已知函数f(x)= .(1)设函数g(x)=f(x)﹣1,求函数g(x)的零点;(2)若函数f(x1)=f(x2)=f(x3)=f(x4),且0<x1<x2<x3<x4≤10,求 的取值范围.
【题目】某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n的样本.如果采用系统抽样和分层抽样方法抽取,不用剔除个体;如果样本容量增加一个,则在采用系统抽样时,需要在总体中先剔除1个个体,求样本容量n.
【题目】某校高三文科分为五个班.高三数学测试后,随机地在各班抽取部分学生进行成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了18人.抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人.(1)问各班被抽取的学生人数各为多少人?(2)在抽取的所有学生中,任取一名学生,求分数不小于90分的概率.
【题目】如图,在三棱柱ABC﹣A1B1C1中,AC⊥BC,AB⊥BB1 , AC=BC=BB1 , D为AB的中点,且CD⊥DA1 . (1)求证:BC1∥平面DCA1;(2)求BC1与平面ABB1A1所成角的大小.
【题目】已知函数f(x)= sin(ωx+φ)(ω>0,﹣ ≤φ< ),f(0)=﹣ ,且函数f(x)图象上的任意两条对称轴之间距离的最小值是 .(1)求函数f(x)的解析式;(2)若f( )= ( <α< ),求cos(α+ )的值.
【题目】 【2017江西4月质检】如图,四棱锥中,侧面底面, , , , , ,点在棱上,且,点在棱上,且平面.
(1)求证: 平面;
(2)求二面角的余弦值.
【题目】《中国谜语大会》是中央电视台科教频道的一档集文化、益智、娱乐为一体的大型电视竞猜节目,目的是为弘扬中国传统文化、丰富群众文化生活.为选拔选手参加“中国谜语大会”,某地区举行了一次“谜语大赛”活动.为了了解本次竞赛选手的成绩情况,从中抽取了部分选手的分数(得分取正整数,满分为100分)作为样本进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100)的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出得分在[50,60),[90,100)的数据). (1)求样本容量n和频率分布直方图中的x,y的值;(2)分数在[80,90)的学生中,男生有2人,现从该组抽取三人“座谈”,求至少有两名女生的概率.
【题目】【2017湖南娄底二模】如图,四棱锥的底面是平行四边形,侧面是边长为2的正三角形, , .
(Ⅰ)求证:平面平面;
(Ⅱ)设是棱上的点,当平面时,求二面角的余弦值.
【题目】已知在平面坐标系内,O为坐标原点,向量 =(1,7), =(5,1), =(2,1),点M为直线OP上的一个动点.(1)当 取最小值时,求向量 的坐标;(2)在点M满足(I)的条件下,求∠AMB的余弦值.
【题目】张老师给学生出了一道题,“试写一个程序框图,计算S=1+ + + + ”.发现同学们有如下几种做法,其中有一个是错误的,这个错误的做法是( )A.B.C.D.