11.
如图,O为直线A1A2015外一点,若A1,A2,A3,A4,A5…A2015中任意相邻两点的距离相等,设${\overrightarrow{OA}}_{1}=\overrightarrow{a}$,$\overrightarrow{O{A}_{2015}}$=$\overrightarrow{b}$,用$\overrightarrow{a},\overrightarrow{b}$表示$\overrightarrow{O{A}_{1}}+\overrightarrow{O{A}_{2}}+…+\overrightarrow{O{A}_{2015}}$,其结果为( )
| A. | 2014($\overrightarrow{a}+\overrightarrow{b}$) | B. | 2015($\overrightarrow{a}+\overrightarrow{b}$) | C. | $\frac{2014}{2}$($\overrightarrow{a}+\overrightarrow{b}$) | D. | $\frac{2015}{2}$($\overrightarrow{a}+\overrightarrow{b}$) |
10.设函数f(x)=ex(2x-1)+ax-a,其中a>-1,若关于x不等式f(x)<0的整数解有且只有一个,则实数a的取值范围为( )
| A. | (-1,$\frac{3}{2e}$] | B. | (-$\frac{3}{4}$,$\frac{3}{2e}$] | C. | (-$\frac{3}{4}$,-$\frac{3}{2e}$] | D. | (-1,-$\frac{3}{2e}$] |
8.若一动直线x=a与函数$f(x)=2{cos^2}(\frac{π}{4}+x)$,g(x)=$\sqrt{3}$cos2x的图象分别交于MN两点,则|MN|的最大值是( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
2.已知函数f(x)=$\left\{\begin{array}{l}1-2|x-\frac{1}{2}|,0≤x≤1\\{log_{2014}}x,\;\;\;\;\;x>1\end{array}$,若直线y=m与函数y=f(x)三个不同交点的横坐标依次为x1,x2,x3且x1<x2<x3,则x3的取值范围是( )
0 250787 250795 250801 250805 250811 250813 250817 250823 250825 250831 250837 250841 250843 250847 250853 250855 250861 250865 250867 250871 250873 250877 250879 250881 250882 250883 250885 250886 250887 250889 250891 250895 250897 250901 250903 250907 250913 250915 250921 250925 250927 250931 250937 250943 250945 250951 250955 250957 250963 250967 250973 250981 266669
| A. | (2,2015) | B. | (1,2015) | C. | (2,2014) | D. | (1,2014) |