8.化简(1+2${\;}^{-\frac{1}{16}}$)(1+2${\;}^{-\frac{1}{8}}$)(1+2${\;}^{-\frac{1}{4}}$)(1+2${\;}^{-\frac{1}{2}}$)得到的结果是( )
| A. | $\frac{1}{2}$(1-2${\;}^{-\frac{1}{16}}$)-1 | B. | (1-2${\;}^{-\frac{1}{16}}$)-1 | C. | 1-2${\;}^{-\frac{1}{16}}$ | D. | $\frac{1}{2}$(1-2${\;}^{-\frac{1}{16}}$) |
6.在边长为1的正三角形ABC中,|$\overrightarrow{AB}$-$\overrightarrow{BC}$|的值为( )
| A. | 1 | B. | 2 | C. | $\frac{\sqrt{3}}{2}$ | D. | $\sqrt{3}$ |
3.有3名战士射击敌机,每人射击一次,1人专射驾驶员,1人专射油箱,1人专射发动机主要部件,命中的概率分别为$\frac{1}{3}$,$\frac{1}{2}$,$\frac{1}{2}$,各人射击是独立的,任意1人射中,敌机就被击落,则击落敌机的概率为( )
| A. | $\frac{5}{6}$ | B. | $\frac{3}{13}$ | C. | $\frac{5}{9}$ | D. | $\frac{2}{3}$ |
2.
已知椭圆C1:$\frac{{x}^{2}}{{{a}_{1}}^{2}}$+$\frac{{y}^{2}}{{{b}_{1}}^{2}}$=1(a1>b1>0)和双曲线C2:$\frac{{x}^{2}}{{{a}_{2}}^{2}}$-$\frac{{y}^{2}}{{{b}_{2}}^{2}}$=1(a2>0,b2>0)有相同的交点F1,F2,且椭圆C1与双曲线C2在第一象限的交点为P,若2$\overrightarrow{O{F}_{2}}$•$\overrightarrow{OP}$=$\overrightarrow{O{F}_{2}}$2(O为坐标原点),则双曲线C2的离心率的取值范围是( )
| A. | ($\sqrt{2}$,+∞) | B. | (2,+∞) | C. | ($\sqrt{3}$,+∞) | D. | (3,+∞) |
1.已知O为坐标原点,A,B两点的坐标均满足不等式组$\left\{\begin{array}{l}{x-3y+1≤0}\\{x+y-3≤0}\\{x-1≥0}\end{array}\right.$则tan∠AOB的最大值等于( )
0 246459 246467 246473 246477 246483 246485 246489 246495 246497 246503 246509 246513 246515 246519 246525 246527 246533 246537 246539 246543 246545 246549 246551 246553 246554 246555 246557 246558 246559 246561 246563 246567 246569 246573 246575 246579 246585 246587 246593 246597 246599 246603 246609 246615 246617 246623 246627 246629 246635 246639 246645 246653 266669
| A. | $\frac{3}{4}$ | B. | $\frac{5}{7}$ | C. | $\frac{4}{7}$ | D. | $\frac{9}{4}$ |