9.已知集合A={x∈R||x-1|<2},Z为整数集,则集合A∩Z中所有元素的和等于( )
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
8.已知$({2+\sqrt{3}i})•z=-2\sqrt{3}i$(i是虚数单位),那么复数z对应的点位于复平面内的( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
5.
用红、黄、蓝、白、黑五种颜色涂在“田”字形的4个小方格内,每格涂一种颜色,相邻两格(有公共变边)涂不同的颜色,如果颜色可以反复使用,则所有涂色方法的种数为( )
| A. | 120 | B. | 240 | C. | 260 | D. | 360 |
4.已知函数f(x)=2x的反函数为f-1(x)
(1)若f-1(x)-f-1(1-x)=1,求实数x的值;
(2)若关于x的方程f(x)+f(1-x)-m=0在区间[1,2]内有解,求实数m的取值范围.
(1)若f-1(x)-f-1(1-x)=1,求实数x的值;
(2)若关于x的方程f(x)+f(1-x)-m=0在区间[1,2]内有解,求实数m的取值范围.
3.在${(\sqrt{x}+\frac{2}{x^2})^n}(n∈{N^*})$的展开式中,若第五项的系数与第三项的系数之比为56:3,则展开式中的常数项是( )
| A. | 第2项 | B. | 第3项 | C. | 第4项 | D. | 第5项 |
2.已知向量$\overrightarrow m=(\sqrt{3}sinωx,-{cos^2}ωx),\overrightarrow n=(cosωx,1)(ω>0)$,把函数f(x)=$\overrightarrow m•\overrightarrow n+\frac{1}{2}$化简为f(x)=Asin(tx+ϕ)+B的形式后,利用“五点法”画y=f(x)在某一个周期内的图象时,列表并填入的部分数据如表所示:
(Ⅰ)请直接写出①处应填的值,并求ω的值及函数y=f(x)在区间$[-\frac{π}{2},\frac{π}{6}]$上的值域;
(Ⅱ)设△ABC的内角A,B,C所对的边分别为a,b,c,已知$f(\frac{A}{2}+\frac{π}{6})=1$,c=2,a=$\sqrt{7}$,求$\overrightarrow{BA}•\overrightarrow{BC}$.
0 245835 245843 245849 245853 245859 245861 245865 245871 245873 245879 245885 245889 245891 245895 245901 245903 245909 245913 245915 245919 245921 245925 245927 245929 245930 245931 245933 245934 245935 245937 245939 245943 245945 245949 245951 245955 245961 245963 245969 245973 245975 245979 245985 245991 245993 245999 246003 246005 246011 246015 246021 246029 266669
| x | $\frac{π}{12}$ | $\frac{7π}{12}$ | ① | ||
| tx+ϕ | 0 | $\frac{π}{2}$ | $\frac{3π}{2}$ | 2π | |
| f(x) | 0 | 1 | 0 | -1 | 0 |
(Ⅱ)设△ABC的内角A,B,C所对的边分别为a,b,c,已知$f(\frac{A}{2}+\frac{π}{6})=1$,c=2,a=$\sqrt{7}$,求$\overrightarrow{BA}•\overrightarrow{BC}$.