4.为了确定学生的答卷时间,需要确定回答每道题所用的时间,为此进行了5次实验,根据收集到的数据,如表所示:
由最小二乘法求得回归方程y=1.8x+a,则a的值为-0.2.
(参考公式:$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=7}^n{{{({{x_i}-\overline x})}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$)
| 题数x(道) | 2 | 3 | 4 | 5 | 6 |
| 所需要时间y(分钟) | 3 | 6 | 7 | 8 | 11 |
(参考公式:$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=7}^n{{{({{x_i}-\overline x})}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$)
3.已知椭圆的标准方程为$\frac{x^2}{5}+\frac{y^2}{4}=1$,F1,F2为椭圆的左右焦点,O为原点,P是椭圆在第一象限的点,则$\frac{{|{P{F_1}}|-|{P{F_2}}|}}{{|{PO}|}}$的取值范围( )
0 241350 241358 241364 241368 241374 241376 241380 241386 241388 241394 241400 241404 241406 241410 241416 241418 241424 241428 241430 241434 241436 241440 241442 241444 241445 241446 241448 241449 241450 241452 241454 241458 241460 241464 241466 241470 241476 241478 241484 241488 241490 241494 241500 241506 241508 241514 241518 241520 241526 241530 241536 241544 266669
| A. | $({0,\frac{{\sqrt{5}}}{5}})$ | B. | $({0,\frac{{2\sqrt{5}}}{5}})$ | C. | $({0,\frac{{3\sqrt{5}}}{5}})$ | D. | $({0,\frac{{6\sqrt{5}}}{5}})$ |