20.已知曲线${C_1}:y=cosx,{C_2}:y=sin(2x+\frac{2π}{3})$,则下面结论正确的是( )
| A. | 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移$\frac{π}{6}$个单位长度,得到曲线C2 | |
| B. | 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移 $\frac{π}{12}$个单位长度,得到曲线C2 | |
| C. | 把C1上各点的横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变,再把得到的曲线向右平移 $\frac{π}{6}$个单位长度,得到曲线C2 | |
| D. | 把C1上各点的横坐标缩短到原来的 $\frac{1}{2}$倍,纵坐标不变,再把得到的曲线向左平移 $\frac{π}{12}$个单位长度,得到曲线C2 |
18.直线y=x+a与抛物线y2=5ax(a>0)相交于A,B两点,C(0,2a),给出下列4个命题:
p1:△ABC的重心在定直线7x-3y=0上,p2:|AB|$\sqrt{3-a}$的最大值为2$\sqrt{10}$;
p3:△ABC的重心在定直线 3x-7y=0上;p4:|AB|$\sqrt{3-a}$的最大值为2$\sqrt{5}$.
其中的真命题为( )
p1:△ABC的重心在定直线7x-3y=0上,p2:|AB|$\sqrt{3-a}$的最大值为2$\sqrt{10}$;
p3:△ABC的重心在定直线 3x-7y=0上;p4:|AB|$\sqrt{3-a}$的最大值为2$\sqrt{5}$.
其中的真命题为( )
| A. | p1,p2 | B. | p1,p4 | C. | p2,p3 | D. | p3,p4 |
15.下列各式中,值为-$\frac{\sqrt{3}}{2}$的是( )
0 241161 241169 241175 241179 241185 241187 241191 241197 241199 241205 241211 241215 241217 241221 241227 241229 241235 241239 241241 241245 241247 241251 241253 241255 241256 241257 241259 241260 241261 241263 241265 241269 241271 241275 241277 241281 241287 241289 241295 241299 241301 241305 241311 241317 241319 241325 241329 241331 241337 241341 241347 241355 266669
| A. | 2sin15°cos15° | B. | 2sin215°-1 | C. | cos215°-sin215° | D. | cos215°+sin215° |